|
|
|
||
Last update: Pokorný Pavel RNDr. Ph.D. (23.02.2018)
|
|
||
Last update: Pokorný Pavel RNDr. Ph.D. (23.02.2018)
The student will be able to use Fourier Transform for signal processing and for equation solving, to find the correct sampling frequency and
the correct measurement time according to the maximal input frequency and the correct detection of close peaks, to use convolution
and deconvolution, to use Singular Value Decomposition. |
|
||
Last update: Pokorný Pavel RNDr. Ph.D. (23.02.2018)
R:Klíč, Volka, Dubcová: Fourierova transformace s příklady z infračervené spektroskopie. VŠCHT Praha 2002, 80-7080478-5.
A: R. Bracewell: The Fourier Transform & Its Applications, McGraw-Hill 3rd edition (1999) |
|
||
Last update: Pokorný Pavel RNDr. Ph.D. (23.02.2018)
http://www.vscht.cz/mat/FT/CviceniFT.html
http://en.wikipedia.org/wiki/Fourier_transform
http://reference.wolfram.com/mathematica/ref/FourierTransform.html |
|
||
Last update: Pokorný Pavel RNDr. Ph.D. (23.02.2018)
The teaching consists of a 2-hour lecture and a 2-hour seminar a week, of individual consultation and of self-study. The final grade is based on
the exam (test + oral). |
|
||
Last update: Pokorný Pavel RNDr. Ph.D. (13.05.2019)
1. Elementary terms. Functions sin and cos. 2. Dirac delta function. 3. Definition of Fourier transform of a function. 4. Properties of Fourier transform, linearity. 5. Inverse Fourier transform. 6. Fourier image of derivative, derivative of image. 7. Translation theorem, scaling theorem. 8. Discrete Fourier transform. 9. Zero padding. 10. Fast Fourier transform. 11. Analysis of 1-dim signal. 12. Power spectrum. 13. Fourier series. 14. Relation between Fourier transform and Fourier series.
|
|
||
Last update: Borská Lucie RNDr. Ph.D. (06.05.2019)
Mathematics A |
Teaching methods | ||||
Activity | Credits | Hours | ||
Konzultace s vyučujícími | 0.9 | 24 | ||
Účast na přednáškách | 1 | 28 | ||
Příprava na zkoušku a její absolvování | 2.1 | 60 | ||
Účast na seminářích | 1 | 28 | ||
5 / 5 | 140 / 140 |