|
|
|
||
The course is intended for all students in bachelor programmes, particularly those studying chemical cybernetics or focusing on economics. Students will become familiar with fundamental concepts and methods used in optimization.
Last update: Szala Leszek Marcin (16.09.2025)
|
|
||
Lectures and seminars
Last update: Kubová Petra (01.05.2019)
|
|
||
1. Problems of mathematical optimization. 2. Linear programming. 3. Convex polyhedra. 4. Simplex method. 5. Duality of linear programming. 6. Integer programming, totally unimodular matrices. 7. Basic notions of graph theory. 8. Shortest path problem. 9. Tree, spanning tree, greedy algorithm. 10. Discrete optimalization problems as problems of integer programming. 11. Nonlinear optimization. 12. Kuhn-Tucker conditions. 13. Numerical methods for nonlinear programming. 14. Convex functions, positive semidefinite matrices. Last update: MAXOVAJ (17.01.2020)
|
|
||
https://iti.mff.cuni.cz/series/2006/311.pdf Last update: Szala Leszek Marcin (16.09.2025)
|
|
||
General skills: 1. basic terms in mathematical optimiztion 2. knowledge and understanding of basic algorithms 3. individual problem solving 4. basic mathematical background for formulation and solving of optimization problems 5. numerical algorithms . Last update: Kubová Petra (01.05.2019)
|
|
||
Mathematics A, Mathematics B (or Mathematics I, Mathematics II) Last update: MAXOVAJ (20.01.2020)
|
Teaching methods | ||||
Activity | Credits | Hours | ||
Účast na přednáškách | 1 | 28 | ||
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi | 0.5 | 14 | ||
Práce na individuálním projektu | 1 | 28 | ||
Příprava na zkoušku a její absolvování | 1.5 | 42 | ||
Účast na seminářích | 1 | 28 | ||
5 / 5 | 140 / 140 |