Organic Reaction Mechanisms - M110006
Title: Mechanismy organických reakcí
Guaranteed by: Department of Organic Chemistry (110)
Faculty: Faculty of Chemical Technology
Actual: from 2023 to 2023
Semester: winter
Points: winter s.:6
E-Credits: winter s.:6
Examination process: winter s.:
Hours per week, examination: winter s.:3/2, C+Ex [HT]
Capacity: 25 / 25 (unknown)
Min. number of students: unlimited
Language: Czech
Teaching methods: full-time
Teaching methods: full-time
Level:  
For type: Master's (post-Bachelor)
Note: course can be enrolled in outside the study plan
enabled for web enrollment
Guarantor: Kovaříček Petr Ing. Ph.D.
Interchangeability : N110015
Is interchangeable with: N110015
Examination dates   
This subject contains the following additional online materials
Annotation -
Last update: Kovaříček Petr Ing. Ph.D. (16.12.2023)
The course is focused on mechanistic interpretation of reactions and processes in organic chemistry and their application in prediction of reaction parameters, product composition and stereochemistry of synthetically useful organic reactions.
Aim of the course -
Last update: Kovaříček Petr Ing. Ph.D. (16.12.2023)

Students will obtain the following competences:

fundamental principles for determination of the mechanism of organic reactions

Mechanisms of polar, multicomponent, pericyclic, radical, and photochemical reactions

elementarz basics of mechanisms occuring in the coordination sphere of transition metals.

Literature -
Last update: Kovaříček Petr Ing. Ph.D. (16.12.2023)

R: R. B. Grossman, The Art of Writing Reasonable Organic Reaction Mechanisms, Springer, Berlin 2006. 978-0-387-21545-7

A: F. A. Carey & Richard J. Sundberg, Advanced Organic Chemistry - Part A: Structure and Mechanisms, Springer, Boston, MA 2007. 978-0-387-44899-2

A: M. B. Smith, March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, Wiley 2006, 9780470084960, DOI:10.1002/0470084960

Learning resources -
Last update: Kovaříček Petr Ing. Ph.D. (11.02.2022)

The e=learning portal contains all slides from lectures as well as additional information sources and animations.

Requirements to the exam - Czech
Last update: Kovaříček Petr Ing. Ph.D. (19.02.2022)

PODROBNÉ SYLABY

1. Historický úvod do teorie struktury hmoty a teorie chemické vazby. Přehled grafického formalismu užívaného v organické chemii. Repetitorium atomových a molekulových orbitalů. Úvod do teorie QMOT (qualitative molecular orbital theory). Rozdělení tříd transformací a mechanismů. Kyseliny a báze v organické chemii, acidobazické organické reakce. Rozpoznání jednotlivých tříd mechanismů dle struktur a podmínek reakce.

2. Mechanismy SN2, SRN1, inserce kovů, eliminace E2 a E1cb, eliminačně-adiční mechanismus, α-eliminace, karbeny a karbenoidy, Zajcevovo a Hoffmanovo pravidlo pro eliminace. Porovnání rozhodujících faktorů pro průběh substituce a eliminace.

3. Adice na karbonyl, modely Burgi-Dunitzův a Felkin-Ahnův, aldolizace, enoláty kinetické a termodynamické, ylidy, Knoevenagelova a aldolová kondenzace, reakce karbonylu s (formálním) přesmykem hydridu (benzoinová kondenzace, Canizzaro, Tiščenko, reakce Oppenauerova a Meerwein-Ponndorf-Verlay), adice hydridu na karbonyl, Michaelova adice, substituce na karbonylu, adičně-eliminační mechanismus, Stetterova syntéza, haloformová (Liebenova) reakce.

4. Substituce na alkenech a arenech v bazickém prostředí, Michaelova substituce, Morita-Baylis-Hillman, nukleofilní substituce na aromátech, adičně-eliminační a eliminačně-adiční mechanismus, Meisenheimerův komplex, SRN1, metalace a výměna halogen-lithium na aromátech a sp2 uhlíku, reakce na sp uhlíku. Baldwinova pravidla pro cyklizace. Přesmyky v bazickém prostředí: benzilový, Favorského, Wolffův, Curtiův, Hoffmannův, Lossenův, Smilesův, Stevensův, Pummererův, Sommelet-Hauserův, reakce Nierensteinova, Arndt-Eistertova homologace.

5. Tvorba a stabilita karbokationtu, geometrie karbokationtu, rezonantní formy, mechanismy SN1 a E1, rozhodující faktory pro průběh substituce a eliminace v kyselém prostředí, příklady SN1, E1 a SN2 probíhající v kyselém prostředí, přesmyky karbokationtu, elektrofilní adice na násobné vazby, Markovnikovo pravidlo, halonium a halolaktonizace, mechanismus SEAr, regioselektivita z pohledu induktivních a mezomerních efektů, rodina Friedel-Craftsových mechanismů (alkylace, acylace, Houben–Hoesch, Bischler-Napieralski), formylace (Gattermann, Gattermann-Koch, Vilsmeier-Haack, Duff), Sommeletova reakce, ipso- a α-substituce, reaktivita diazoniových solí (Meerweinova arylace, Gomberg-Bachmann, Pschorr, Japp-Klingemann, Sandmayer, Schiemann), reaktivita alifatických diazonií.

6. Reaktivita karbonylu v kyselém prostředí, tvorba acetalu, aminalu a iminia, enolizace v kyselém prostředí, princip mikroskopické reversibility, reakce aldolová, Michaelova a Mukaiyamova, Robinsonova anulace, reakce Mannichova, Hell-Vollhardt-Zelinskeho, reaktivita trojných vazeb v kyselém prostředí, přesmyky v kyselém prostředí (Wagner-Meerwein, 1,2-hydridový a alkylový, pinakolový), Bayer-Villigerova oxidace, přesmyky Beckmannův, Stieglitzův a Bambergererův.

7. Srovnání polárních mechanismů dle funkčních skupin a dle tříd transformací v kyselém vs. zásaditém prostředí, srovnání přesmykův kyselém a zásaditém prostředí (Tiffeneau Demjanov, Hofmann Martius, Fisher Hepp, Fries vs. Ramberg Bäcklund, Tiemann, Neber, α-ketolový, Fritsch–Buttenberg–Wiechell, Seyferth–Gilbert homologace. Esterifikace a saponifikace, 11 mechanismů dle klasifikace AAc2 atd. Nejběžnější organické reakce fosforu (Mitsunobu, Arbuzov, Staudinger, Wittig, Horner-Wadsworth-Emmons, Appel, Corey-Fuchs, Pudovik, Kabachnik-Fields), síry (ylidy, Johnson-Corey-Chaykovský, Juliova olefinace) a křemíku (Petersonova olefinace, Brookův přesmyk, od/chránění alkoholu). Multikomponentní reakce (Paal-Knorr, Strecker, Bucherer-Bergs, Hantzsch, Biginelli, Petasis, Gewald, Passerini, Ugi). Deduktivní diagramy pro racionální volbu mechanismu.

8. Základní roztřídění pericyklických reakcí, teorie QMOT a symetrie hraničních orbitalů v pericyklických reakcích, reversibilita, termické vs. fotochemické řízení reakce. Elektrocyklické reakce, Favorského přesmyk, oxyallyl-cyklopropanon rovnováha, Nazarovova cyklizace. Stereospecificita pericyklických reakcí, konrotační a disrotační tranzitní stav, Woodward-Hoffmannova pravidla, Bergmanova cyklizace. Cykloadiční reakce a jejich třídění, Diels-Alderova reakce, inverse-demand modifikace, cykloadice singletového kyslíku, stereospecificita, regio- a stereo-selektivita cykloadičních reakcí, suprafaciální/antarafaciální přístup, Sharplessova dihydroxylace, dipolární cykloadice, Huisgensova cykloadice a CuAAC, [2+2] cykloadice (Wittig, Paterno-Büchi, kumuleny), cheletropické reakce, pericyklické hydrogenace a hydroborace.

9. Sigmatropní přesmyky a jejich klasifikace, přesmyky Cope, aza-Cope, Claisen, stereochemie sigmatropních přesmyků a Woodward-Hoffmannova pravidla. Prominentní příklady reakcí se sigmatropním přesmykem (Fisherova syntéza indolů, přesmyky Overmanův, Sommelet-Hauserův, [2,3]-Wittigův). Enové reakce, metala-enové reakce, retro-hetero-enové reakce, mechanismus Ei, Copeho a Čugajevova eliminace, oxidace SeO2 a Swernova.

10. Reakce radikálové a fotochemické, elektronová struktura radikálů a excitovaných stavů, princip interakce elektromagnetického záření s hmotou, stabilita radikálů, persistentní radikály a spinové pasti, radikálová iniciace termicky a fotochemicky, použití kovů a jejich solí, typické reakce radikálů, redukce kovy (Clemmensen, Birch, Bouveault-Blanc), ketylové radikály a jejich reakce (pinakolová, McMurry, acyloinová, Dowd-Beckwith), [1,2]-Wittigův přesmyk, thiol-enová click reakce, propagace řetězových reakcí, autooxidace. Norrishovo štěpení typu I a II, photo-(de)-caging, foto-Friesův přesmyk, Bartonova a Hofmann-Löffler-Freytagova reakce, isomerizace násobných vazeb a fotopřepínače, Feringovy motory.

11. Stručný úvod do mechanismů reakcí katalyzovaných přechodnými kovy, základní mechanistické kroky, stručný přehled cross-couplingových reakcí, reakce Crabbehe a Pauson-Khandova, metateze, Tebbeho olefinace.

PODROBNÉ INFORMACE O UKONČENÍ PŘEDMĚTU:

Předmět je zakončen zkouškou. Student může přistoupit ke zkoušce poté, co mu byl udělen zápočet.

Zápočet se uděluje za úspěšné absolvování zápočtových testů a prezentování miniprojektu na vybraný mechanismus na semináři v průběhu semestru. Testy jsou dva, zpravidla se píší 8. a 14. týden semestru na seminářích. Za úspěšně absolvovaný test se považuje takový, ve kterém student získal nejméně µ - 2σ (střední hodnota mínus dvě standardní odchylky) bodů dle normálního rozdělení výsledků všech studentů v tomto testu v daném kurzu a akademickém roce. Testy trvají 120 minut.

Zkouška se skládá z písemné a ústní části. Podmínkou účasti na písemné zkoušce je zápočet zapsaný v SISu. Písemná část zkoušky trvá 180 minut a je klasifikována 100 body. K ústní části zkoušky může student přistoupit pouze pokud získal z písemné části alespoň 50 bodů. Pokud tuto podmínku student nesplnil, je klasifikován známkou "F". Pokud student neuspěje u ústní zkoušky, musí znovu opakovat i písemnou část zkoušky bez ohledu na výsledek té předchozí.

Pokud se student ze závažných důvodů nestihl odhlásit ze zkoušky, může se omluvit bez zbytečného odkladu přímo zkoušejícímu. V tomto případě vždy uvede důvod nepřítomnosti na zkoušce. Neomluvená neúčast nebo neuznaná omluva nepřítomnosti u zkoušky se hodnotí klasifikací "F".

Materiály ke studiu jsou dostupné na e-learningovém portálu.

Syllabus -
Last update: Kovaříček Petr Ing. Ph.D. (16.12.2023)

1. Historical introduction to the structure of matter and theory of chemical bond. Overview of graphical formalism used in organic chemistry. Repetition of atomic and molecular orbitals. Introduction to QMOT theory (qualitative molecular orbital theory). Classification of transformation and mechanism classes. Acid/base concept of organic compounds, acidobasic organic reactions. Recognition of respective mechanism classes based on structure and reaction conditions.

2. Mechanisms SN2, SRN1, metal insertion, elimination E2 and E1cb, elimination-addition mechanisms, α-elimination, carbenes and carbenoids, Zaitsev and Hoffman rules for elimination. Decision factors for substitution vs. elimination.

3. Addition to carbonyl, Burgi-Dunitz a Felkin-Ahn models, aldolization, kinetic and thermodynamic enolates, Knoevenagel and aldol condensation, carbonyl reactions with (formal) hydride shift (benzoin, Canizzaro, Tishchenko, Oppenauer, Meerwein-Ponndorf-Verlay), adice hydride na carbonyl, Michael addition, substitution at carbonyl, addition-elimination mechanism, Stetter synthesis, haloform (Lieben) reaction.

4. Substitution at alkene and arene substrates under basic conditions, Michael substitution, Morita-Baylis-Hillman, nucleophilic substitution on aromates, addition-elimination and elimination-addition mechanisms, Meisenheimer complex, SRN1, metalation and halogen-lithium exchange on aromates and sp2 carbon, reaction at sp carbon. Baldwin rules for cyclization. Rearrangements under basic conditions: benzylic acid, Favorsky, Wolff, Curtius, Hoffmann, Lossen, Smiles, Stevens, Pummerer, Sommelet-Hauser, Nierenstein reaction, Arndt-Eistert homologation.

5. Stability and formation of carbocations, carbocation geometry, resonance, mechanisms SN1 and E1, Decision factors for substitution vs. elimination under acidic conditions, examples of SN1, E1 and SN2 under acidic conditions, carbocation rearrangements, electrophilic addition to multiple bonds, Markovnikov rules, halonium and halolactonization, electrophilic addition to multiple bonds. Mechanism SEAr, regioselectivity explained by induction and resonance effects. Family of Friedel-Crafts mechanisms (alkylations, acylations, Houben-Hoesch, Bischler-Napieralski), formylations (Gattermann, Gattermann-Koch, Vilsmeier-Haack, Duff), Sommelet reaction, ipso- and α-substitutione, reactivity of diazonium salts, Meerweinova arylation, Gomberg-Bachmann, Pschorr, Japp-Klingemann, Sandmayer, Schiemann), reaktivitity of aliphatických diazonia.

6. Reactivity of carbonyl compounds, formation of acetals, aminals and imines, enolization under acidic conditions, microscopic reversibility principle, reactions: aldol, Michael, Mukaiyama, Robinson, Mannich, Hell-Vollhardt-Zelinski, reactivity of triple bonds under acidic conditions, rearrangements under acidic conditions (Wagner-Meerwein, 1,2-hydride and alkyl shift, pinakole), Baeyer-Villiger oxidations, rearrangements: Beckmann, Stieglitz, Bambergerer.

7. Comparison of polar mechanisms under basic vs acidic conditions sorted by functional groups and transformation classes, comparison of acidic vs basic rearrangements (Tiffenau-Demjanov, Hofmann-Martius, Fisher-Hepp, Ries, Ramberg- Bäcklund, Tiemann, Neber, α-ketol, Fritsch–Buttenberg–Wiechell, Seyferth–Gilbert homologation. Esterification and ester hydrolysis, Ingold classification of esterification mechanisms. The most common reactions occurring on phosphorus (Mitsunobu, Arbuzov, Staudinger, Wittig, Horner-Wadsworth-Emmons, Appel, Corey-Fuchs, Pudovik, Kabachnik-Fields), sulfur (ylides, Johnson-Corey-Chaykovsky, Julia olefination) a silicon (Peterson olefination, Brook rearrangement, (de)protection of alcohols). Multicomponent reactions (Paal-Knorr, Strecker, Bucherer-Bergs, Hantzsch, Biginelli, Petasis, Gewald, Passerini, Ugi). Deductive diagrams for rationalization of mechanisms.

8. Fundamental classification of pericyclic reactions, QMOT theory and symmetry of frontier molecular orbitals in pericyclic reactions, reversibility, thermic vs photochemical control of pericyclic reactions. Electrocyclic reactions, Favroskii rearrangement, oxyallyl-cyclopropanon equilibrium, Nazarov cyclization. Stereospecificity of pericyclic reactions, conrotation vs disrotation in transition state, Woodward-Hoddmann rules, Bergman cyclization. Cycloadditions and their classification, Diels-Alder reaction, inverse-demand Diels-Alder, cycloadditions of singlet oxygen, stereospecificity, regio- and stereo-selectivity of cycloadditions, suprafacial vs antarafacial approach, Sharpless dihydroxylation, dipolar cycloadditions, Huisgens cycloaddition and CuAAC, [2+2] cycloadditions (Wittig, Paterno-Büchi, cumulenes), cheletropic reactions, pericyclic hydrogenations and hydroborations.

9. Sigmatropic rearrangements and their classification, Cope, aza-Copem and Claisen rearrangements, stereochemistry of sigmatropic rearrangements and Woodward-Hoffmann rules. Prominent examples involving sigmatropic rearrangements (Fisher indole synthesis, Overman, Sommelet-Hauser, [2,3]-Wittig rearrangements). Ene reactions, metalla-ene reactions, retro-hetero-ene reactions, mechanism Ei, Cope and Chugaev elimination, Swern oxidation and oxidation by SeO2.

10. Radical and photochemical reactions, electronic structure of radicals and excited states, principles of light-matter interactions, stability of radicals, persistent radicals and spin traps, radical initiation by thermal and photochemical stimuli, the use of metals and their salts, typical faith of a radical, reductions by metals (Clemmensen, Birch, Bouveault-Blanc), ketyl radicals and their reactions (pinacol, McMurry, acyloin, Dowd-Beckwith), [1,2]-Wittig rearrangement, thiol-ene click reaction, propagation in chain mechanisms, autooxidation. Norrish type I and type II, photo-(de)caging, photo-Fries rearrangement, Barton and Hofmann-Löffler-Freytag reaction, isomerization of double bonds and photoswitches, Feringa’s motors.

11. Brief introduction to mechanisms running in the coordination sphere of transition metals, the most basic mechanistic steps, brief overview of cross-coupling reactions, Crabbe and Pauson-Khand reactions, Tebbe olefination.

12. Brief introduction to methods used to study mechanisms of organic reactions: isotope effects, kinetics, calculations, correlative methods, and analytical toolbox overview.

Registration requirements -
Last update: Kovaříček Petr Ing. Ph.D. (16.12.2023)

None.

Course completion requirements - Czech
Last update: Kovaříček Petr Ing. Ph.D. (19.02.2022)

Úspěšné absolvování zápočtových testů, prezantace miniprojektu na semináři a absolvování zkoušky.

Teaching methods
Activity Credits Hours
Konzultace s vyučujícími 0.5 14
Účast na přednáškách 1.5 42
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi 1.5 42
Příprava na zkoušku a její absolvování 1.5 42
Účast na seminářích 1 28
6 / 6 168 / 168