Advanced Structure of Crystals - N108025
Title: Pokročilá struktura krystalů
Guaranteed by: Department of Solid State Chemistry (108)
Actual: from 2020
Semester: winter
Points: winter s.:3
E-Credits: winter s.:3
Examination process: winter s.:
Hours per week, examination: winter s.:2/0 Ex [hours/week]
Capacity: unknown / unknown (unknown)
Min. number of students: unlimited
Language: Czech
Teaching methods: full-time
Is provided by: M108008
For type:  
Note: course can be enrolled in outside the study plan
enabled for web enrollment
Guarantor: Čejka Jan Ing. Ph.D.
Z//Is interchangeable with: M108008
Examination dates   
Annotation -
Last update: Čejka Jan Ing. Ph.D. (31.03.2015)
Macro and microsymmetryin relation with compound properties are discussed in detail. Both Schoenfliess and Hermann-Maugin notations are explained. Various approaches to generation of equivalent and special positions are trained. Real structures, crystal morphology, applications in crystallography and IR/Raman spectroscopy are discussed.
Aim of the course -
Last update: Čejka Jan Ing. Ph.D. (31.03.2015)

Students will be able to:

orient in crystallography problems, generate point groups and selected space groups in Schoenfliess and Hermann-Maugin notations, including Wyckoff special positions; calculate equivalent positions using matrices of symmetry elements, transform non-standard space groups.

Literature -
Last update: Čejka Jan Ing. Ph.D. (31.03.2015)

Z:Kraus I.,Struktura a vlastnosti krystalů,Academia,Praha,1993,802000372X

International Tables for Crystallography, Volume A, International Union of Crystallography

Syllabus -
Last update: Čejka Jan Ing. Ph.D. (31.03.2015)

1. Macroscopic symmetry of crystals, symmetry elements and operations

2. Matrix representation of macroscopic symmetry ellements

3. Schoenfliess and Hermann Mauguin notation of symmetry elements

4. Point groups, group generators, projections Laue groups, chiral groups

5. Crystallographic systems, crystal lattice, Bravais lattices, Miller indexes, crystal morphology

6. Symmetry of crystal structures, matrix representation of microscopic symmetry

7. International Tables for Crystallography

8. Simple space groups without translation symmetry

9. Simple space groups with translations symmetry, choice of origin

10. Asymmetrical unit, general equivalent positions

11. Group multiplicity, Z, special positions, Wyckoff notations

12. Non-standard groups of symmetry, transformations

13. Real crystal, polymorphism, isomorphism, salts, solvates, cocrystals, disorder

14. Bonds in crystals

15. Structural types of inorganic and organic compounds

16. Working with Cambridge Structure Database

17. Symmetry in IR and Raman spectroscopy

Teaching methods
Activity Credits Hours
Účast na přednáškách 1 28
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi 1 28
Příprava na zkoušku a její absolvování 1 28
3 / 3 84 / 84
Coursework assessment
Form Significance
Regular attendance 40
Oral examination 60