Physical Chemistry of Colloidal Systems - S403016
Title: Physical Chemistry of Colloidal Systems
Guaranteed by: Department of Physical Chemistry (403)
Faculty: Faculty of Chemical Engineering
Actual: from 2020
Semester: winter
Points: winter s.:7
E-Credits: winter s.:7
Examination process: winter s.:
Hours per week, examination: winter s.:3/2, C+Ex [HT]
Capacity: unknown / unknown (unknown)
Min. number of students: unlimited
State of the course: cancelled
Language: English
Teaching methods: full-time
Teaching methods: full-time
Level:  
Guarantor: Kolafa Jiří prof. RNDr. CSc.
Examination dates   Schedule   
Annotation
This course extends the basic course Physical Chemistry I with focus on biological sciences. Covered are general laws governing behavior of systems from the molecular point of view as well as applications in biochemistry and colloidal chemistry.
Last update: Kolafa Jiří (26.09.2013)
Literature

Talks, exercises: http://old.vscht.cz/fch/en/tools/kolafa/S403016.html

Atkins P.W., de Paula J., Physical Chemistry, Oxford University Press, 2010, 9780199543373

Physical chemistry in brief: http://old.vscht.cz/fch/en/tools/breviary.html

Last update: Kolafa Jiří (16.09.2015)
Teaching methods

Lectures, exercises.

Last update: Kolafa Jiří (08.02.2018)
Syllabus

1. Formal chemical kinetics: Concepts, simple and simultaneous reactions.

2. Reaction mechanisms, catalysis, enzyme kinetics (Michaelis–Menten), inhibition.

3. Equilibrium thermodynamics: Gibbs and Helmholtz functions, activity, chemical potential. Chemical equilibria, the direction of chemical reaction, simultaneous reactions.

4. Chemical equilibria in aqueuous solutions: pH, weak acids and bases and their salts, buffers, slightly soluble salts.

5. Statistical thermodynamics light: Pressure of ideal gas and the interpretation of temperature, Boltzmann probability, entropy.

6. Electrostatic phenomena in ionic solutions: Debye-Hückel theory, electrical double layer.

7. Electrochemistry: Galvanic cells, Nernst equation.

8. Thermodynamics of mixtures: Colligative properties, osmotic pressure.

9. Nonequilibrium thermodynamics: Transport properties, Fick's laws, diffusivity, electrical conductivity.

10. Interfaces: Surface and interface tension, wetting. Curved interfaces, nucleation.

11. Adsorption: Surface excess and Gibbs adsorption isotherm. Adsorption isotherms and models (Freundlich, Langmuir, BET).

12. Dispersion systems - classification: Colloid, sol, gel, foam, emulsion, aerosol; solutions of macromolecules; micelles, surface films. Rheology, optical properties.

13. Dispersion systems - phenomena: Forces between colloidal particles. Sedimentation, electrokinetic phenomena, zeta potential.

14. Stability of colloidal systems (DLVO theory).

Last update: Kolafa Jiří (08.02.2018)
Registration requirements

Physicial Chemistry I or equivalent

Mathematics I or equivalent

Last update: Kolafa Jiří (26.09.2013)