|
|
|
||
Basic course in Calculus for students in bachelor program. It provides mathematical skills necessary for other subjects (physics, physical chemistry,...) in bachelor program. Success in Mathematics A is a prerequisite for Mathematics B.
Last update: Pokorný Pavel (01.08.2013)
|
|
||
General skills: 1. basic mathematical terms 2. knowledge and understanding of basic algorithms 3. individual problem solving 4. basic mathematical background for formulation and solving of natural and engineering problems 5. numerical algorithms (algebraic equations, integration, differential equations). Last update: TAJ413 (01.08.2013)
|
|
||
R: Klíč a kol.: Matematika I ve strukturovaném studiu, skripta, VŠCHT Praha, 2007, ISBN: 978-80-7080-656-2 R: Heřmánek a kol.: Sbírka příkladů k Matematice I ve strukturovaném studiu, skripta, VŠCHT Praha, 2008, ISBN: 978-80-7080-688-3 R: Turzík a kol.: Matematika II ve strukturovaném studiu, skripta, VŠCHT Praha, 2005, ISBN 80-7080-555-2 R: M.Dubcová a kol.: Sbírka příkladů z Matematiky II ve strukturovaném studiu, skripta, VŠCHT Praha, 2008,ISBN 978-7080-706-4 A: Míčka a kol.: Sbírka příkladů z matematiky, skripta, VŠCHT Praha, 2002, ISBN 80-7080-484-X A: Porubský Š.: Fundamental Mathematics for Engineers, Vol. I. Skripta VŠCHT Praha. ISBN 80-7080-418-1 Last update: TAJ413 (28.08.2013)
|
|
||
Lectures, seminars. Last update: Pokorný Pavel (01.08.2013)
|
|
||
1. Elements of Mathematical Logic. Introduction to calculus. 2. Continuity and limits of the functions. Infinite series. 3. Derivatives, Mean value theorem, L’ Hospital’s rule. 4. Monotone functions, extreme values of a function, asymptotes of the graph. 5. Newton’s methods. Taylor’s formula with remainder. Differential. 6. Curves in plane, tangent vector. Polar coordinates. 7. Antiderivative. Definite integral. Geometric and physical applications. 8. Techniques of integration. 9. Improper integrals. Numerical integration. 10. The definition of Riemann integral and its applications. The mean value theorem for integrals. 11. Ordinary differential equations of the first order. Separable equations. Euler’s method. 12. Linear space. The basic notions. The space Rn and C(I). 13. Matrices and Determinants. Inverse matrix. Matrix equations. 14. Systems of linear algebraic equations. Gauss-Jordan method. Cramer’s rule.
Last update: TAJ413 (11.07.2013)
|
|
||
http://www.vscht.cz/mat/El_pom/sbirka/sbirka1.html http://www.vscht.cz/mat/MA/PocitacMA.html Last update: TAJ413 (28.08.2013)
|
|
||
No requirements. Last update: Pokorný Pavel (01.08.2013)
|
Teaching methods | ||||
Activity | Credits | Hours | ||
Konzultace s vyučujícími | 0.5 | 14 | ||
Účast na přednáškách | 1.5 | 42 | ||
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi | 3.5 | 98 | ||
Příprava na zkoušku a její absolvování | 2 | 56 | ||
Účast na seminářích | 1.5 | 42 | ||
9 / 9 | 252 / 252 |
Coursework assessment | |
Form | Significance |
Regular attendance | 20 |
Examination test | 25 |
Continuous assessment of study performance and course -credit tests | 15 |
Oral examination | 40 |