|
|
|
||
Mathematics B develops skills obtained in Mathematics A to a level required in Master Program.
Last update: Pokorný Pavel (01.08.2013)
|
|
||
General skills: 1. basic mathematical terms 2. knowledge and understanding of basic algorithms 3. individual problem solving 4. basic mathematical background for formulation and solving of natural and engineering problems 5. numerical algorithms (systems of differential equations). Last update: Pokorný Pavel (01.08.2013)
|
|
||
R: Klíč a kol.: Matematika I ve strukturovaném studiu, skripta, VŠCHT Praha, 2007, ISBN: 978-80-7080-656-2 R: Heřmánek a kol.: Sbírka příkladů k Matematice I ve strukturovaném studiu, skripta, VŠCHT Praha, 2008, ISBN: 978-80-7080-688-3 R: Turzík a kol.: Matematika II ve strukturovaném studiu, skripta, VŠCHT Praha, 2005, ISBN 80-7080-555-2 R: M.Dubcová a kol.: Sbírka příkladů z Matematiky II ve strukturovaném studiu, skripta, VŠCHT Praha, 2008,ISBN 978-7080-706-4 A: Míčka a kol.: Sbírka příkladů z matematiky, skripta, VŠCHT Praha, 2002, ISBN 80-7080-484-X A: K. Rektorys: Survey of Applicable Mathemaics, Springer 2nd edition (March 31, 1994) Last update: Pokorný Pavel (01.08.2013)
|
|
||
Lectures and seminars. Last update: Pokorný Pavel (01.08.2013)
|
|
||
1. Linear differential equations of n-th order. 2. The system two linear and nonlinear differential equations of the first order. 3. Predator-Prey models: Lotka-Wolterra System. 4. Geometry in R3 (Rn). Vectors, dot and cross products. Some properties of the subsets of the metric space Rn. 5. Differential calculus in Rn . The mapping from Rn to Rk . Linear mapping. 6. The functions two and more variables. The graphs of functions of two variables. 7. Directional and partial derivatives. Tangent plane. Gradient. Newton’s method. 8. Taylor’s formula. The Hessian and extreme values. Method of least squares. 9. Implicit function theory. 10. Line integral of scalar and vector field. 11. Differential form, exact differential form, Potential vector field. 12. Line integrals independent of the path. 13. Double integrals. Fubini theorem, Substitution in double integral. Improper integrals. Laplace integral. 14. Triple integrals. Applications. Cylindrical and spherical coordinates. Last update: TAJ413 (11.07.2013)
|
|
||
http://www.vscht.cz/mat/El_pom/sbirka/sbirka2.html Last update: Pokorný Pavel (01.08.2013)
|
|
||
Mathematics A Last update: Pokorný Pavel (01.08.2013)
|
Teaching methods | ||||
Activity | Credits | Hours | ||
Konzultace s vyučujícími | 0.5 | 14 | ||
Účast na přednáškách | 1.5 | 42 | ||
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi | 2.5 | 70 | ||
Příprava na zkoušku a její absolvování | 2 | 56 | ||
Účast na seminářích | 1.5 | 42 | ||
8 / 8 | 224 / 224 |
Coursework assessment | |
Form | Significance |
Examination test | 40 |
Continuous assessment of study performance and course -credit tests | 20 |
Oral examination | 40 |