|
|
|
||
Basic course in Calculus for students in bachelor program. It provides mathematical skills necessary for other subjects (physics, physical chemistry,...) in bachelor program. Success in Mathematics I is a prerequisite for Mathematics II.
Last update: Pokorný Pavel (01.08.2013)
|
|
||
General skills: 1. basic mathematical terms 2. knowledge and understanding of basic algorithms 3. individual problem solving 4. basic mathematical background for formulation and solving of natural and engineering problems 5. numerical algorithms (algebraic equations, integration). Last update: Pokorný Pavel (01.08.2013)
|
|
||
A: Porubský: Fundamental Mathematics for Engineers, Vol.I, VŠCHT, 2001, ISBN: 80-7080-418-1 Last update: KNOBLOCL (17.12.2015)
|
|
||
Lectures and seminars Last update: Pokorný Pavel (01.08.2013)
|
|
||
1. Functions of one real variable. Domain and range, graphs and basic properties of real functions of one variable. 2. Inverse function, composition of functions. Elementary functions, exponential, logarithmic, trigonometric and inverse trigonometric functions. 3. Continuity of functions. Basic theorems on continuous functions. Limit of functions and sequences. 4. Definition of derivative. Geometrical and physical meaning of the derivative. Basic rules for derivatives. Derivatives of elementary functions. Differential of a function. 5. Mean value theorem and its applications, L' Hospital's rule. Taylor's formula. 6. Monotone functions, extreme values of a function, asymptotes of the graph. Newton's method for the solution of the equation f(x)=0. 7. Parametric curves, vector tangent to curve, application in Physics. 8. Antiderivative and its property. Newton's definite integral, its properties and geometrical meaning. Numerical integration - trapezoidal rule 9. Techniques of integration. Integration by parts, substitution.Integration of rational functions. Improper integrals. 10. Definition of Riemann definite integral. The mean value theorem for integrals. 11. Differential equations, basic notions, method of separation and variation of constant. Euler's method. 12. Vectors and matrices. Linear independence of the system of vectors, rank of the matrix. Determinants. Systems of linear algebraic equations. Cramer's rule. 13. Linear differential equations of the first and second order with constant coefficients and a particular right hand side and their solution. 14. Functions of two real variables, domain, graph, partial derivative, tangent plane, total differential Last update: Dubcová Miroslava (04.11.2014)
|
|
||
http://www.vscht.cz/mat/El_pom/sbirka/sbirka1.html http://www.vscht.cz/mat/El_pom/Mat_MATH_MAPLE.html http://www.vscht.cz/mat/MI/Aplikacni_priklady.pdf Last update: Pokorný Pavel (01.08.2013)
|
|
||
No requirements Last update: Pokorný Pavel (01.08.2013)
|
Teaching methods | ||||
Activity | Credits | Hours | ||
Konzultace s vyučujícími | 0.5 | 14 | ||
Účast na přednáškách | 1.5 | 42 | ||
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi | 3 | 84 | ||
Příprava na zkoušku a její absolvování | 2 | 56 | ||
Účast na seminářích | 2 | 56 | ||
9 / 9 | 252 / 252 |
Coursework assessment | |
Form | Significance |
Regular attendance | 10 |
Examination test | 35 |
Continuous assessment of study performance and course -credit tests | 20 |
Oral examination | 35 |