SubjectsSubjects(version: 963)
Course, academic year 2013/2014
  
Methods of Analysis of Non-linear Dynamical Models - S409001
Title: Methods of Analysis of Non-linear Dynamical Models
Guaranteed by: Department of Chemical Engineering (409)
Faculty: Faculty of Chemical Engineering
Actual: from 2013 to 2018
Semester: summer
Points: summer s.:5
E-Credits: summer s.:5
Examination process: summer s.:
Hours per week, examination: summer s.:2/2, C+Ex [HT]
Capacity: unknown / unknown (unknown)
Min. number of students: unlimited
State of the course: taught
Language: Czech
Teaching methods: full-time
Teaching methods: full-time
Level:  
Note: course can be enrolled in outside the study plan
enabled for web enrollment
Guarantor: Schreiber Igor prof. Ing. CSc.
Examination dates   Schedule   
Annotation
The course is oriented on ability of formulation of nonlinear dynamical models in the form of systems of ordinary differential equations. Continuation of steady state solutions in dependence on a parameter, construction of solution diagram, bifurcation diagram and their interpretation. Bifurcation of steady states, Hopf bifurcation. Continuation and bifurcation of periodic solutions in dependence on a parameter. Selected engineering and physical problems are solved.
Last update: Schreiber Igor (13.02.2014)
Aim of the course

Students will be able to analyze dynamic behaviour of the model described by a system of ordinary differential equations in dependence on parameters.

Last update: SMIDOVAL (13.02.2014)
Course completion requirements

Z: Holodniok M., Klíč A., Kubíček M., Marek M.: Metody analýzy nelineárních dynamických modelů. Academia Praha 1986. ISBN 21-010-86.

D: dodávána individuálně podle zaměření projektu

Last update: SMIDOVAL (13.02.2014)
Literature

R: Kubíček M., Marek M.: Computational Methods in Bifurcation Theory and Dissipative Structures. Springer Verlag, New York 1983. ISBN 0-387-12070-X.

A: Individually according to the project orientation.

Last update: SMIDOVAL (13.02.2014)
Teaching methods

Lectures and exercise classes.

Last update: SMIDOVAL (13.02.2014)
Syllabus

1. Lumped parameter systems. Examples.

2. Continuation algorithm.

3. Diagram of steady state solutions.

4. Stability of steady state solutions.

5. Branching of steady state solutions.

6. Hopf bifurcation.

7. Construction of bifurcation diagram.

8. Simulation methods and construction of phase portrait.

9. Computation and continuation of periodic solutions.

10. Bifurcation of periodic solutions.

11. Characterization of chaotic attractors.

12. Nonautonomous systems.

13. Selected methods for analysis of distributed parameter systems.

14. Primary and secondary bifurcation.

Last update: SMIDOVAL (13.02.2014)
Learning resources

http://www.vscht.cz/mat/Ang/indexAng.html

Last update: SMIDOVAL (13.02.2014)
Registration requirements

Mathematics I, Mathematics for chemical engineers

Last update: SMIDOVAL (13.02.2014)
 
VŠCHT Praha