SubjectsSubjects(version: 963)
Course, academic year 2013/2014
  
Mathematics II - Z413003
Title: Matematika II
Guaranteed by: Department of Mathematics (413)
Faculty: Faculty of Chemical Engineering
Actual: from 2007
Semester: summer
Points: summer s.:8
E-Credits: summer s.:8
Examination process: summer s.:
Hours per week, examination: summer s.:3/3, C+Ex [HT]
Capacity: unknown / unknown (1000)
Min. number of students: unlimited
State of the course: cancelled
Language: Czech
Teaching methods: full-time
Teaching methods: full-time
Level:  
Is provided by: N413003
Old code: M2
Note: you can enroll for the course repeatedly
course can be enrolled in outside the study plan
Is interchangeable with: N413003
Examination dates   Schedule   
Annotation -
Course develops and strengthens the concepts and skills of elementary mathematics (the course of mathematics MI), particularly skills related to various disciplines of the curriculum of the magister's study.
Last update: SMIDOVAL (06.02.2007)
Literature - Czech

Turzík a kol.: Matematika II ve strukturovaném studiu, skripta, VŠCHT Praha, 2005

Míčka a kol.: Sbírka příkladů z matematiky, skripta, VŠCHT Praha, 2002

Krajňáková, Míčka, Machačová: Zbierka úloh z matematiky, Alfa a SNTL, 1988

Porubský: Fundamental Mathematics for Engineers,Vol.I, Vol.I, VŠCHT, 2001

L.Gillman, R.H.McDowell: Calculus. W.W.Norton&Copany, Inc. 1973

Last update: SMIDOVAL (06.02.2007)
Syllabus -

1. Linear space, base, dimension. The space C(I). Linear mapping.

2. Linear differential equations of n-th order.

3. The system two linear and nonlinear differential equations of the first order.

4. Predator-Prey models: Lotka-Wolterra System.

5. Geometry in R^3 (R^n). Metrics in R^n.

6. Differential calculus in R^n. The functions of two and more variables.

7. Directional and partial derivatives. Tangent plane. Gradient. Newton’s method.

8. Taylor’s formula. The Hessian and extreme values. Method of least squares.

9. Implicit function theory.

10. Line integral of scalar and vector field.

11. Differential form, exact differential form, Potential vector field.

12. Line integrals independent of the path.

13. Double integrals. Fubini theorem, Substitution in double integral. Improper integrals.

14. Triple integrals. Applications. Cylindrical and spherical coordinat

Last update: SMIDOVAL (06.02.2007)
 
VŠCHT Praha