|
|
|
||
Course develops and strengthens the concepts and skills of elementary mathematics (the course of mathematics MI), particularly skills related to various disciplines of the curriculum of the magister's study.
Last update: SMIDOVAL (06.02.2007)
|
|
||
Turzík a kol.: Matematika II ve strukturovaném studiu, skripta, VŠCHT Praha, 2005 Míčka a kol.: Sbírka příkladů z matematiky, skripta, VŠCHT Praha, 2002 Krajňáková, Míčka, Machačová: Zbierka úloh z matematiky, Alfa a SNTL, 1988 Porubský: Fundamental Mathematics for Engineers,Vol.I, Vol.I, VŠCHT, 2001 L.Gillman, R.H.McDowell: Calculus. W.W.Norton&Copany, Inc. 1973 Last update: SMIDOVAL (06.02.2007)
|
|
||
1. Linear space, base, dimension. The space C(I). Linear mapping. 2. Linear differential equations of n-th order. 3. The system two linear and nonlinear differential equations of the first order. 4. Predator-Prey models: Lotka-Wolterra System. 5. Geometry in R^3 (R^n). Metrics in R^n. 6. Differential calculus in R^n. The functions of two and more variables. 7. Directional and partial derivatives. Tangent plane. Gradient. Newton’s method. 8. Taylor’s formula. The Hessian and extreme values. Method of least squares. 9. Implicit function theory. 10. Line integral of scalar and vector field. 11. Differential form, exact differential form, Potential vector field. 12. Line integrals independent of the path. 13. Double integrals. Fubini theorem, Substitution in double integral. Improper integrals. 14. Triple integrals. Applications. Cylindrical and spherical coordinat Last update: SMIDOVAL (06.02.2007)
|