|
|
|
||
In lectures, students learn about modern methods of trace element analysis based on the principles of atomic spectroscopy. Introductory part of the course is devoted to theoretical principles, the structure of the atom, energy transitions in the electron shell of atoms and basic structural elements used in atomic spectroscopy. The first part of the course comprises atomic absorption spectroscopy. Students learn the used radiation sources, methods of atomization interference correction methods and some special approaches to the analysis (generation of volatile compounds, electrolytic deposition of analyte). Another series of lectures is devoted to emission spectral analysis, students will learn various methods of excitation spectra, such as spark, arc, glow discharge, plasma and laser. The following part of the lectures if concerned with inductively coupled plasma mass spectrometry, the students will learn the basics of instrumentation, methods of correction of spectral and non-spectral interferences and special techniques, such as elemental speciation analysis, single-particle analysis and isotope dilution. Attention is also paid to the atomic fluorescence spectroscopy and the X-ray spectroscopy. In the lectures on applications, students get acquainted with work in the trace lab, the methods of preparation of various types of samples (water, biological materials, ores and rocks) and the possibilities of using atomic spectroscopy techniques for in situ analysis.
Last update: Kubová Petra (22.01.2018)
|
|
||
R: Cullen M.: Atomic Spectroscopy in Elemental Analysis, Blackwell, ISBN 1-84127-333-3 R: José A.C. Broekaert: Analytical Atomic Spectrometry with Flames and Plasmas, Wiley, ISBN 978-3-527-31282-5 Skripta (in Czech): Černohorský T., Jandera P.: Atomová spektroskopie, Univerzita Pardubice 1997. ISBN 80-7194-114-X R: Ebdon L., Evans E.H., Fisher A.S., Hill S.J.: An Introduction to Analytical Atomic Spectrometry. Willey 1998, ISBN 978-0-471-97418-5 Last update: MESTEKO (20.02.2018)
|
|
||
An oral examination. Student can use only two reparative terms. Last update: Kubová Petra (22.01.2018)
|
|
||
1. Structure of atoms. 2. Interaction of electrons and electromagnetic radiation, width and intensity of spectral lines. 3. Fundamentals of optics, construction of monochromators and polychromators, construction of radiation detectors. 4. Atomic absorption spectroscopy, basic instrumentation - radiation sources, atomizers. 5. Atomic absorption spectroscopy: interference and background correction, signal optimization and processing. 6. Atomic absorption spectroscopy: special techniques - hydride generation, mercury determination, electrodeposition. 7. Atomic fluorescence spectroscopy. 8. Flame emission spectroscopy, spectroscopy with electric arc and spark excitation, rotating electrode spectroscopy, spectroscopy with glow discharge. 9. Inductively coupled and DC plasma optical emission spectroscopy, LIBS 10. Inductively coupled plasma mass spectroscopy: basic instrumentation - ion optics, ion filters and detectors. 11. Inductively coupled plasma mass spectroscopy: interference and methods of their elimination; special techniques - laser ablation, analysis of nanoparticles, connection with electrothermal evaporation. 12. Hyphenated techniques in speciation analysis of trace elements. 13. X-ray fluorescence spectrometry. 14. Preparation of samples for elemental trace analysis, principles of work in a trace laboratory.
Last update: Kubová Petra (22.01.2018)
|
|
||
http://web.vscht.cz/~koplikr/Atomov%c3%a1%20%20spektrometrie.pdf Last update: Kubová Petra (22.01.2018)
|
|
||
Students completing the course will acquire theoretical knowledge of the methods of elemental analysis using optical spectroscopy (absorption, emission and fluorescence), X-ray spectrometry and mass spectrometry. They will be familiar with the various methods of sample preparation and problems of cleanness in trace laboratory. Last update: Kubová Petra (22.01.2018)
|
|
||
Basic knowledge of analytical chemistry Last update: Kubová Petra (22.01.2018)
|
Teaching methods | ||||
Activity | Credits | Hours | ||
Konzultace s vyučujícími | 0.5 | 14 | ||
Účast na přednáškách | 1 | 28 | ||
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi | 0.5 | 14 | ||
Příprava na zkoušku a její absolvování | 1 | 28 | ||
3 / 3 | 84 / 84 |
Coursework assessment | |
Form | Significance |
Oral examination | 100 |