SubjectsSubjects(version: 965)
Course, academic year 2019/2020
  
Fluid Mechanics - AM409014
Title: Fluid Mechanics
Guaranteed by: Department of Chemical Engineering (409)
Faculty: Faculty of Chemical Engineering
Actual: from 2019
Semester: winter
Points: winter s.:4
E-Credits: winter s.:4
Examination process: winter s.:
Hours per week, examination: winter s.:2/1, C+Ex [HT]
Capacity: unknown / unknown (unknown)
Min. number of students: unlimited
State of the course: taught
Language: English
Teaching methods: full-time
Level:  
Guarantor: Slouka Zdeněk doc. Ing. Ph.D.
Jahoda Milan doc. Dr. Ing.
Interchangeability : M409014, N409065, S409045
Is interchangeable with: M409014
Examination dates   Schedule   
This subject contains the following additional online materials
Annotation -
The Fluid Mechanics course builds on the knowledge gained in the subject of Chemical Engineering I and allows students to get more theoretical and practical knowledge about the properties of fluids, the balance of forces in fluids at rest, on movement of fluids in the force fields and principles of hydraulic machinery. The course is focused on engineering point of view and the practical problems of fluid mechanics are solved within the seminars.
Last update: Kubová Petra (22.01.2018)
Literature -

R:Yamaguchi H.: Engineering fluid mechanics, Springer, 2008, ISBN 1402067429

R:Nakayama Y., Boucher R.F.: Introduction to Fluid Mechanics,Elsevier Ltd., 1998, ISBN 978-0-340-67649-3

A:Peyret R.: Handbook of Computational Fluid Mechanics, Elsevier Ltd., 1996, ISBN 978-0-12-553010-1

Last update: Kubová Petra (22.01.2018)
Syllabus -

1. Basic terms from the theory of continuum, forces in fluids, physical properties of fluids.

2. Dimensions and units, dimensional homogeneity, dimensional analysis, Buckingham Pi-theorem.

3. Fluid statics: hydrostatic forces in liquids and gases, measuring the pressure.

4. Hydrodynamics: the equation of continuity.

5. Euler's equation of ideal fluids, Bernoulli equation.

6. Application of Bernoulli’s equation, Torricelli's theorem, unsteady flow, flow through a small hole.

7. Navier-Stokes equations of real fluids.

8. CFD numerical solution of NS equations.

9. Laminar flow between two parallel walls.

10. Laminar flow in a tube of circular cross-section, Hagen-Poiseuille equation.

11. Turbulent flow, kinetic energy, Reynolds equation.

12. Flow in a pipe of circular cross-section, local pressure losses, piping network.

13. Flow past immersed bodies, coefficient of resistance, Kármán vortex street.

14. Momentum equation, forces acting on walls, turbomachinery.

Last update: Kubová Petra (22.01.2018)
Learning resources -

http://www.sciencedirect.com/science/book/9780340676493

Last update: Kubová Petra (22.01.2018)
Learning outcomes -

Students will be able to:

Know the basic physico-chemical properties of the fluid and the principles of their measurements.

The theoretical description of the behavior of fluids at rest.

The theoretical description of momentum equations of fluid.

Basic knowlege of Computer fluid dynamics.

Last update: Kubová Petra (22.01.2018)
Registration requirements -

Unit Operations of Chemical Engineering

Last update: Kubová Petra (22.01.2018)
Teaching methods
Activity Credits Hours
Účast na přednáškách 1 28
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi 1.5 42
Příprava na zkoušku a její absolvování 0.5 14
Účast na seminářích 0.5 14
4 / 4 98 / 112
Coursework assessment
Form Significance
Continuous assessment of study performance and course -credit tests 50
Oral examination 50

 
VŠCHT Praha