SubjectsSubjects(version: 965)
Course, academic year 2019/2020
  
Dispersion systems I - B409012
Title: Disperzní systémy I
Guaranteed by: Department of Chemical Engineering (409)
Faculty: Faculty of Chemical Engineering
Actual: from 2019 to 2019
Semester: both
Points: 7
E-Credits: 7
Examination process:
Hours per week, examination: 3/2, C+Ex [HT]
Capacity: winter:unlimited / unlimited (unknown)
summer:unknown / unknown (unknown)
Min. number of students: unlimited
State of the course: not taught
Language: Czech
Teaching methods: full-time
Level:  
Additional information: http://předmět je vyučován pouze v letním semestru
Note: course can be enrolled in outside the study plan
enabled for web enrollment
you can enroll for the course in winter and in summer semester
Guarantor: Šoóš Miroslav prof. Ing. Ph.D.
Grof Zdeněk doc. Ing. Ph.D.
Interchangeability : N409071
Examination dates   Schedule   
This subject contains the following additional online materials
Annotation -
The aim of the course is to familiarise students with the chemical engineering description of phenomena, laboratory and industrial processes during which dispersions or other structured multiphase systems are formed or play a crucial role.
Last update: Šoóš Miroslav (15.02.2018)
Literature -

Z: R.F. Probstein, Physicochemical hydrodynamics, Wiley, 1994

Z: L.L. Schramm, Emulsions, Foams and Suspensions, Wiley, 2005

Z: Bohren & Huffman, Absorption and scattering of light by small particles, Wiley 1983

Z: J. N. Israelachvili, Intermolecular and Surface Forces, Elsevier 2011

Z: Perry’s Chemical Engineers’ Handbook, McGraw-Hill 1997

Z: Butt H.-J., Graf K. and M. Kappl, Physics and Chemistry of Interfaces, Wiley 2003

Last update: Šoóš Miroslav (15.02.2018)
Syllabus -

1. Definition of dispersion, particle size distribution (PSD) and other characteristics

2. Experimental characterization of PSD (image analysis, Coulter counter, light scattering)

3. Interaction forces between particles (van de Waals attraction force)

4. Electrostatic repulsion, Debye length, surface vs. zeta potential, DLVO theory

5. Interfacial energy, contact angle, capillary forces, Young-Laplace equation, surface tension measurement, Brownian motion

6. Coagulation and coalescence, kinetics and thermodynamic stability of dispersions, Population balance equation (PBE)

7. Surfactants (classification and examples), Hydrophilic-Lipophilic-Balance (HLB), critical micellar concentration (CMC)

8. Phase diagram for L-L systems, Extraction, emulsion preparation methods

9. Phase diagram for S-L systems, solid dispersion, conglomerate, co-crystal, nucleation, Ostwald ripening

10. S-L dispersions (precipitation, emulsification and flame synthesis)

11. S-L dispersions (milling and high pressure homogenization)

12. G-L dispersions (spray drying, nebulizer, electrospray and inkjet)

13. Solid materials (synthesis and characterization)

14. Transport processes in porous media (mass and heat)

Last update: Šoóš Miroslav (15.02.2018)
Learning resources -

http://www.vscht.cz/uchi/ped/index.html

Last update: Pátková Vlasta (15.01.2018)
Learning outcomes -

After completing the course, the students will be able to:

  • classify dispersion systems
  • make reasoned decisions about the method of preparation of a given type of dispersion system
  • evaluate factors that influence the dispersion system stability.

Last update: Pátková Vlasta (15.01.2018)
Registration requirements -

Physics I

Last update: Pátková Vlasta (15.01.2018)
Teaching methods
Activity Credits Hours
Účast na přednáškách 1.5 42
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi 2 56
Příprava na zkoušku a její absolvování 2 56
Účast na seminářích 1.5 42
7 / 7 196 / 196
Coursework assessment
Form Significance
Continuous assessment of study performance and course -credit tests 40
Oral examination 60

 
VŠCHT Praha