SubjectsSubjects(version: 965)
Course, academic year 2019/2020
  
Technology of Materials for Electronics - M126004
Title: Technologie materiálů pro elektroniku
Guaranteed by: Department of Solid State Engineering (126)
Faculty: Faculty of Chemical Technology
Actual: from 2019 to 2020
Semester: summer
Points: summer s.:3
E-Credits: summer s.:3
Examination process: summer s.:
Hours per week, examination: summer s.:2/0, Ex [HT]
Extent per academic year: 2 [hours]
Capacity: unlimited / unknown (unknown)
Min. number of students: unlimited
State of the course: taught
Language: Czech
Teaching methods: full-time
Level:  
Note: course can be enrolled in outside the study plan
enabled for web enrollment
Guarantor: Slepička Petr prof. Ing. Ph.D.
Interchangeability : N126011
Examination dates   Schedule   
Annotation -
The development of microelectronics and photonics is directly limited by the technological capabilities of the preparation of special materials, usually of high purity and preparation of highly complex structures and components in discrete or integrated form. Semiconducting materials technology and structures and the possibility of the implementation and use of new physical principles play a vital role. The aim of the subject is to familiarize students with the basic technological procedures for the preparation of important semiconductor materials and structures. Attention is focused on the production of single crystal materials, especially silicon, and substances such AIIIBV as input materials of microelectronic and photonic devices and integrated structures. The principles of other processes such as epitaxial and diffusion of technology, vacuum evaporation and sputtering, chemical methods of thin film deposition and lithographic processes for preparation of circuits with high density of integration are also explained.
Last update: Hladíková Jana (04.01.2018)
Course completion requirements -

Written exam (100%).

Last update: Slepička Petr (20.02.2018)
Literature -

R: Hüttel I. Technology of materials for electronics and optoelectronics, Institute of Chemical Technology Prague, 2000, ISBN: 80-7080-387-8

Last update: Hladíková Jana (04.01.2018)
Requirements to the exam -

Subject matter is regularly repeated and discussed with students at lectures. This ensures the continuous control level of students' knowledge and clarity of lectures. The assessment of knowledge level and grading requires successful completion of a written test at the end of the semester.

Last update: Slepička Petr (20.02.2018)
Syllabus -

1. The structure of semiconducting materials.

2. Crystal growth, classification of phase interfaces.

3. Crystallization, nucleation theory.

4. Transport phenomena at the interface

5. Production of single crystal by Czochralski and Bridgman method.

6. Epitaxy from the liquid phase, principle, device, characteristics of structures.

7. Epitaxy from the gaseous phase, principle, device, characteristics of structures.

8. Molecular beam epitaxy, principle, device, characteristics of structures.

9. Diffusion of impurities, ion implantation, device, production of PN junction.

10. Vacuum evaporation, principle, device, characteristics of structures.

11. Vacuum sputtering, principle, device, characteristics of structures.

12. The technology of microelectronic structures.

13. The technology of semiconductor sources of radiation for optoelectronics.

14. Integration of electronic and optoelectronic structures.

Last update: Hladíková Jana (04.01.2018)
Learning resources -

Presentations available at teacher's office.

Last update: Slepička Petr (20.02.2018)
Learning outcomes -

Students will be able to:

Demonstrate their knowledge in the field of crystal growth and nucleation theory.

Describe and divide primary methods of growth of single crystals and thin films.

Know the methods of preparation of basic semiconductor and thin film structures (cathodic sputtering, vacuum deposition, diffusion, and other chemical processes, lithography, etching procedures, etc.).

Know the preparation of the final semiconductor and photonic devices and will have an overview of their applications.

Know the procedures for the preparation of special thin film nanostructures.

Last update: Hladíková Jana (04.01.2018)
Registration requirements -

Physics I, Mathematics I

Last update: Hladíková Jana (04.01.2018)
Teaching methods
Activity Credits Hours
Konzultace s vyučujícími 1 28
Účast na přednáškách 1 28
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi 0.5 14
Příprava na zkoušku a její absolvování 0.5 14
3 / 3 84 / 84
Coursework assessment
Form Significance
Examination test 100

 
VŠCHT Praha