SubjectsSubjects(version: 965)
Course, academic year 2019/2020
  
Statistical Data Analysis - N143042
Title: Statistická analýza dat
Guaranteed by: Department of Informatics and Chemistry (143)
Faculty: Faculty of Chemical Technology
Actual: from 2019 to 2020
Semester: winter
Points: winter s.:5
E-Credits: winter s.:5
Examination process: winter s.:
Hours per week, examination: winter s.:2/2, C+Ex [HT]
Capacity: unknown / unknown (unknown)
Min. number of students: unlimited
State of the course: taught
Language: Czech
Teaching methods: full-time
Level:  
Is provided by: M143002
Guarantor: Svozil Daniel prof. Mgr. Ph.D.
Spiwok Vojtěch prof. Ing. Ph.D.
Is interchangeable with: M143002
Examination dates   Schedule   
Annotation -
This course is the follow-up to the Applied Statistics lectures. Freely available statistical software R is presented, and students use it to practise common statistical tasks such as, e.g., exploratory data analysis, hypothesis testing, analysis of variance or regression.
Last update: Svozil Daniel (06.08.2013)
Literature -

R:Venables R.W.N., Smith D.M. and the R Core Team: An Introduction to R (available online na http://cran.r-project.org/doc/manuals/r-release/R-intro.pdf, 20.5.2013)

R:Cohen T., Cohen J.Y.: Statistics and Data with R: An applied approach through examples. ISBN: 9780470721896 (online available from vscht.cz domain at http://onlinelibrary.wiley.com/book/10.1002/9780470721896, 20.5.2013)

A:Rumsey D. Intermediate Statistics for Dummies; For Dummies, 2007. ISBN 0470045205

Last update: TAJ143 (02.07.2013)
Requirements to the exam - Czech

V polovině semestru se píše zápočtová písemná práce. Na konci semestru studenti skládají písemnou zkoušku.

Last update: ROZ143 (07.06.2013)
Syllabus -

1. Introduction to R statistics software, help

2. Input and output in R

3. Creating graphs in R

4. Basic statistic distributions, random numbers in R

5. Descriptive one-dimensional statistics, boxplot

6. Standard deviation, mean error, confidence interval and their graphic representation in R

7. Hypotheses testing in R: t-test

8. Hypotheses testing in R: variance analysis

9. Descriptive statistics and their use in R

10. Creating and testing linear models in R

11. Creating and testing non-linear models in R

12. Basic linear algebra in R

13. Principal component analysis, its implementation and use in R

14. Cluster analysis in R

Last update: TAJ143 (25.09.2013)
Learning resources -

Online course materials at http://e-learning.vscht.cz

video course "Computing for Data Analysis" (using and programming in R) by Roger D. Peng, https://www.coursera.org/course/compdata

video course "Data Analysis" (applied statistics in R) by Jeff Leek, https://www.coursera.org/course/dataanalysis

Online textbooks

OpenIntro Statistics - http://www.openintro.org/stat/index.php

OnlineStatBook - http://onlinestatbook.com/2/index.html

Hyperstat - http://davidmlane.com/hyperstat/index.html

StatPrimer - http://www.sjsu.edu/faculty/gerstman/StatPrimer/

Last update: Svozil Daniel (09.12.2016)
Learning outcomes -

Students will be able to:

Use the R software (environment for statistical computing)

Do the exploratory analysis and hypotheses testing in R

Do the regression analysis in R

Analyze multidimensional data in R

Present results of statistics analysis using graphical capabilities of R

Last update: TAJ143 (25.09.2013)
Registration requirements -

Mathematics, Applied Statistics

Last update: ROZ143 (07.06.2013)
Teaching methods
Activity Credits Hours
Účast na přednáškách 1 28
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi 1 28
Práce na individuálním projektu 1 28
Příprava na zkoušku a její absolvování 1 28
Účast na seminářích 1 28
5 / 5 140 / 140
Coursework assessment
Form Significance
Examination test 70
Continuous assessment of study performance and course -credit tests 30

 
VŠCHT Praha