|
|
|
||
The course includes selected methods of the biomedical modeling and data analysis using relevant information systems. Custom theme includes a description of the acquisition and analysis of multichannel biomedical data and images with their subsequent modeling. The focus of the course is on mathematical data processing and well-researched assessment results. It allows students to unify view on the biological data processing by using computer technology, especially MATLAB programming environment.
Last update: KNOCIKOJ (24.06.2024)
|
|
||
Students completing the course will be able to uderstand the biomedical, mathematical and physical essence of biosignals (especially cognitive evoked potentials and EEG, ECG, ventilation parameters and muscle activity). Students will be able to suggest optimal methods of mathematical processing of biosignals, based on their nonstationary and nonlinear nature. Students will be familiar with novel trends of mathematical processing in research and clinical practice.
Last update: KNOCIKOJ (28.06.2024)
|
|
||
Vypracování a obhajoba pěti ročníkových projektů: 0 - 30 bodů
Ústní zkouška: 0-70 bodů
Celkové bodové hodnocení: 100-90 A, 89-80 B, 79-70 C, 69-60 D, 59-50 E, 49-0 F. Last update: KNOCIKOJ (17.09.2023)
|
|
||
Obligatory:
Recommended:
Optional:
Last update: KNOCIKOJ (28.06.2024)
|
|
||
1. Biological signals as a source of medical data, homeostasis, genesis and characteristics of featured biosignals (ECG, EEG, EMG, ENG, EOG…) 2. Different biosignals according to the phyisical essence and rhytmicity. Properties of biosignals and adequate methods of analysis. 3. Generation and transfer of biosignals. Passive and active transport at a cellular level, action potential. 4. Recording of biosignals. Sampling, quantizing and digital filtration. Variety of filters and methods of the noise elimination. 5. Processing of signals in time and frequency domain, spectral analysis, periodogram and FFT. 6. Non-stationarity and modification of the time-frequency resolution. Wavelet analysis of biosignals. 7. Electrocardiography, heart rate variability, electrical axis of the heart. Nonlinear dynamics in analysis of parameters of normal and pathological ECG. 8. Chaos a dynamical analysis of biosignals. The entropic brain theory. 9. Quantitative electroencephalography, automatic detection of patterns. Analysis of EEG changes under different neuropsychiatric conditions. 10. Discriminant and cluster analysis, fuzzy sets. 11. Topographic brain mapping – amplitude, frequency… 12. Biostatistics and testing of the hypotheses in biomedical studies. 13. Artificial neural networks, introduction to the methods of artificial intelligence. 14. Biosignals and detection of quantitative biomarkers in physiological and pathophysiological conditions. Last update: KNOCIKOJ (18.09.2023)
|
|
||
www.honeywellprocess.com/
www.mathworks.com/
Last update: KNOCIKOJ (24.06.2024)
|
|
||
none Last update: Pátková Vlasta (20.04.2018)
|
Teaching methods | ||||
Activity | Credits | Hours | ||
Obhajoba individuálního projektu | 1 | 28 | ||
Účast na přednáškách | 1 | 28 | ||
Práce na individuálním projektu | 1 | 28 | ||
Účast na seminářích | 1 | 28 | ||
4 / 4 | 112 / 112 |