|
|
|
||
Basic principles of selected statistical methods for analysing multidimensional data will be outlined with focus on reconciliation of the assumptions of the methods and interpretation of their results. Students will learn how to perform corresponding calculations in statistical software R.
Last update: Pátková Vlasta (09.01.2018)
|
|
||
Students will know:
1. Understand basic principles of selected statistical methods for multivariate data analysis
2. Reconcile assumptions of particular methods.
3. Understand the results of the methods.
4. Perform essential calculations with specific data in specialized software (R).
Last update: Pátková Vlasta (09.01.2018)
|
|
||
Credit for seminar project. Oral exam. Last update: Kříž Pavel (09.02.2018)
|
|
||
R: Meloun M., Militký J., Hill M.: Počítačová analýza vícerozměrných dat v příkladech, Academia, Praha 2005. R: Härdle W. K., Simar L.: Applied Multivariate Statistical Analysis, Springer 2015. R: Haruštiaková D. a kol.: Vícerozměrné statistické metody v biologii, Akademické nakladatelství CERM, Brno 2012. (https://www.iba.muni.cz/res/file/ucebnice/jarkovsky-vicerozmerne-statisticke-metody.pdf) A: Hendl J.: Přehled statistických metod, Portál, Praha 2012. A: Rencher A. C., Christensen W. F.: Methods of Multivariate Analysis, John Wiley & Sons 2012. A: Varmuza K., Filzmoser P.: Introduction to Multivariate Statistical Analysis in Chemometrics, CRC Press 2016. A: Králová H.: Vybrané moderní metody mnohorozměrné statistické analýzy, UP v Olomouci (diploma thesis), 2013. (https://theses.cz/id/orpkza/00171614-387484501.pdf) Last update: Kříž Pavel (05.11.2018)
|
|
||
Lectures and seminars. Last update: Pátková Vlasta (09.01.2018)
|
|
||
1. Data vector, data matrix and matrix algebra (multiplication, inverse matrix, eigenvalues and eigenvectors), covariance matrix. 2. Vizualisation of multidimensional data. 3. Exploratory data analysis (EDA). 4. Cluster analysis. 5. Principal component analysis (PCA). 6. Multidimensional scaling. 7. Parameter estimation and hypothesis testing. Bayesian statistics. 8. Multivariate analysis of variance (MANOVA). 9. Regression methods 1 - multiple linear regression. 10. Regression methods 2 - principal component regression (PCR), generalized linear models (GLM). 11. Discriminant analysis. 12. Canonical correlation analysis. 13. Factor analysis (FA). 14. Supplements and summary of multivariate statistical methods, buffer for holidays. Last update: Pátková Vlasta (09.01.2018)
|
|
||
Lecture notes on e-learning
Statistická analysa dat v R (lecture notes by Doc. Spiwok, VSCHT) http://web.vscht.cz/~spiwokv/statistika/skripta.pdf Last update: Pátková Vlasta (09.01.2018)
|
|
||
Students are expected to have either completed at least one of the prerequisite courses Applied Statistics or Statistical Data Analysis or possess the equivalent knowledge on probability theory and statistics prior to enrolling in the course. Last update: Borská Lucie (13.05.2019)
|
|
||
No requirements. Last update: Borská Lucie (06.05.2019)
|
Teaching methods | ||||
Activity | Credits | Hours | ||
Účast na přednáškách | 1 | 28 | ||
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi | 0.5 | 14 | ||
Práce na individuálním projektu | 1 | 28 | ||
Příprava na zkoušku a její absolvování | 1.5 | 42 | ||
Účast na seminářích | 1 | 28 | ||
5 / 5 | 140 / 140 |