|
|
|
||
The course focuses on the processes associated with perfect and imperfect combustion of fuel (heating value, burning temperature, excess air factor, the general equation of oxygen balance, the amount and composition of flue gas and desulphurization), next section is focused on the thermodynamic processes in the power plant (work, thermal and thermodynamic efficiency, regeneration cycle), calculations associated with combined cycle and cooling cycles and heat pump cycles.
Last update: Mištová Eva (22.01.2018)
|
|
||
Students will be able to: to calculate the amount and composition of flue gases during perfect and imperfect combustion of the fuel, the actual combustion temperature, coefficient of excess air, heat loss, steam generator balance, thermal and thermodynamic efficiency, the amount of steam produced, fuel burned and the amount of cooling water and its loss, superheated steam temperature regulation by injection of condensate, efficiency of combined cycle, values associated with cooling to a low temperature in a wet or dry refrigeration cycle. Last update: Mištová Eva (22.01.2018)
|
|
||
R:Mištová E.,Macák J.,Jelínek L.:Energetika-Návody k výpočtům,VŠCHT Praha,2016,978-80-7080-946-4 A:Vošta J., Matějka Z., Macák J.:Energetika,VŠCHT Praha,1999,80-7080-358-4 A:Tabulky a diagramy z oboru paliv, SNTL Praha 1956 A:Výpočty termodynamických, transportních a ostatních vlastností obyčejné vody,CZ NC PWS,Ústav termomechaniky AV ČR,Praha,2001,80-85918-63-3 Last update: Mištová Eva (22.01.2018)
|
|
||
1. Types of fuels for power production, properties thereof. Upper and lower calorific values. 2. Effective combustion. Excess of air. Flue gas analysis. 3. Incomplete combustion. Air excess coefficient. Oxygen balance. 4. Temperature of combustion. Combustion products dissociation. Combustion rate and limits. 5. Boiler efficiency estimation. Guarantee tests, standards. 6. States of water and steam. State diagrams. IAPWS formulations (IFC67, IF97). 7. Estimation of wet steam state. Methods, devices. 8. Heat cycles. Thermal efficiency. Methods of its increase. 9. Power and heat production plants. Schemes, utilized heat, losses. 10. Steam turbines, expansion in h-s diagram. Thermodynamic efficiency. 11. Power production indexes, estimation thereof. 12. Cooling cycles, balance. Balance of turbine condenser. 13. Combined cycles, thermodynamic processes, efficiency. 14. Absorption and compression cooling cycles. Heat pumps. Last update: Mištová Eva (22.01.2018)
|
|
||
https://uen.vscht.cz/studium/8321/10465 https://uen.vscht.cz/studium/8321/8735/10467 https://uen.vscht.cz/files/uzel/10468/0001~~S81LLUpPLclMzj68UqEkMak0J7sSAA.pdf?redirected https://uen.vscht.cz/files/uzel/10468/0002~~y9AtVkjJTEwvSswFAA.pdf?redirected Last update: Mištová Eva (22.01.2018)
|
|
||
Power Engineering, Physical Chemistry I Last update: Mištová Eva (22.01.2018)
|
Teaching methods | ||||
Activity | Credits | Hours | ||
Účast na přednáškách | 1 | 28 | ||
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi | 0.5 | 14 | ||
Příprava na zkoušku a její absolvování | 2.5 | 70 | ||
Účast na seminářích | 1 | 28 | ||
5 / 5 | 140 / 140 |
Coursework assessment | |
Form | Significance |
Regular attendance | 10 |
Continuous assessment of study performance and course -credit tests | 30 |
Oral examination | 60 |