The course focuses on advanced methods of infrared, THz and MW spectroscopies, which will be taught with a common theoretical background. At the same time, advanced experimental methods will be discussed to distinguish high-resolution spectroscopy from other spectroscopies. Simultaneously with the theoretical interpretation, practical demonstrations in specialized laboratories of the University of Chemistry and Technology and of the Academy of Sciences of the Czech Republic will take place.
Last update: Kania Patrik (02.09.2024)
Předmět je zaměřen na pokročilé metody infračervené, THz a MW spektroskopie, které budou vyučovány se společným teoretickým základem. Současně budou probírány i pokročilé metody experimentu, které vysoce rozlišenou spektroskopii odlišují od všech ostatních spektroskopií. Zároveň s teoretickým výkladem budou probíhat praktické ukázky ve specializovaných laboratořích VŠCHT a AV ČR.
Last update: Kania Patrik (02.09.2024)
Course completion requirements -
Exam
Last update: Kania Patrik (02.09.2024)
Zkouška
Last update: Kania Patrik (02.09.2024)
Literature -
Recommended:
W. Gordy, R. L. Cook. Microwave Molecular Spectra. New York: John Wiley & Sons, 1984, s. ISBN 0-471-08681-9.
H. Kroto. Molecular Rotation Spectra. : Dover Pubns, 1992, s. ISBN 978-0486672595.
M. Hollas. High Resolution Spectroscopy. : Wiley, 2013, s. ISBN 978-0470844168.
Last update: prepocet_literatura.php (19.12.2024)
Doporučená:
W. Gordy, R. L. Cook. Microwave Molecular Spectra. New York: John Wiley & Sons, 1984, s. ISBN 0-471-08681-9.
H. Kroto. Molecular Rotation Spectra. : Dover Pubns, 1992, s. ISBN 978-0486672595.
M. Hollas. High Resolution Spectroscopy. : Wiley, 2013, s. ISBN 978-0470844168.
Last update: prepocet_literatura.php (19.12.2024)
Syllabus -
1. Introduction, basic concepts, spectroscopy types according to the quantum mechanical model and energy range, quantum states, Einstein theory of spectral transitions
2. State populations, radiation transition equation and its special cases
3. Spectral lines width, causes of spectral line width expansion, resolution of lines
4. Molecular Hamiltonian, Born-Oppenheimer approximation, quantum chemistry and electron spectra, rotational and vibrational Hamiltonian, rotational, rovibrational, and rovibronic spectra
5. Fine and hyperfine structure of quantum states, quadrupole splitting, hyperfine magnetic nuclear spin-orbital interactions, magnetic nuclear spin-spin interactions, spin statistical weights of levels, Pauli's Principle
6. Rotational spectroscopy, Hamiltonian and its special cases, selection rules, symmetric tops
8. Vibration-rotation Hamiltonian and spectra, selection rules for rotation-vibration transitions, hyperfine structure of rotation-vibration transitions
9. Vibronic spectra
10. Doppler limited spectroscopy and sub-Doppler spectroscopy, high and ultra-high resolution, Lamb dip and molecular beams
11. Planck and monochromatic sources of radiation, lasers
12. Tunable monochromatic sources of radiation, laser diodes, clystrones, carcinotrones, Schottky diodes, duplication and other multiplication of photon energy
13. Application of high resolution spectroscopy I
14. Application of high resolution spectroscopy II
Last update: Kania Patrik (02.09.2024)
1. Úvod, základní pojmy, typy spektroskopií podle kvantově mechanického modelu a podle energetického rozsahu, kvantové stavy, Einsteinova teorie spektrálních přechodů
2. Populace stavů, rovnice přenosu záření a její speciální případy