|
|
|
||
Physical motivation, definition, properties and application of Fourier Transform, Discrete FT, Fast FT, 1-dim and higher dimensional FT, Inverse FT, convolution and deconvolution, theory of distributions (generalized functions), especially Dirac Delta Distribution and Singular Value Decomposition are presented with application in (audio and image) signal processing and in infra-red spectroscopy.
Last update: Pokorný Pavel (23.02.2018)
|
|
||
R:Klíč, Volka, Dubcová: Fourierova transformace s příklady z infračervené spektroskopie. VŠCHT Praha 2002, 80-7080478-5.
A: R. Bracewell: The Fourier Transform & Its Applications, McGraw-Hill 3rd edition (1999) Last update: Pokorný Pavel (23.02.2018)
|
|
||
The teaching consists of a 2-hour lecture and a 2-hour seminar a week, of individual consultation and of self-study. The final grade is based on
the exam (test + oral). Last update: Pokorný Pavel (23.02.2018)
|
|
||
1. Basic notions about periodic functions and some useful functions. Convolution.
2. Dirac delta function, basic properties. Discretization of the continuous signal.
3. The definition of Fourier transform and its basic properties.
4. Fourier transform of delta-function and of periodic functions.
5. The signals of finite length. Instrument line shape.
6. The methods of apodization and deconvolution.
7. The influence of the discretization of the signal on the spectrum. Aliasing.
8. Discrete Fourier transform. Definition.
9. The method of zero-filling.
10. Fast Fourier transform, the main idea, usage, number of operations.
11. The theory of distribution. Regular and singular distributions. Fourier transform of distributions.
12. Two-dimentsional and higher dimensional Fourier transform.
13. Fourier series.
14. Fourier transform in infrared spectroscopy Last update: Pokorný Pavel (23.02.2018)
|
|
||
http://www.vscht.cz/mat/FT/CviceniFT.html
http://en.wikipedia.org/wiki/Fourier_transform
http://reference.wolfram.com/mathematica/ref/FourierTransform.html Last update: Pokorný Pavel (23.02.2018)
|
|
||
The student will be able to use Fourier Transform for signal processing and for equation solving, to find the correct sampling frequency and
the correct measurement time according to the maximal input frequency and the correct detection of close peaks, to use convolution
and deconvolution, to use Singular Value Decomposition. Last update: Pokorný Pavel (23.02.2018)
|
|
||
Prerequisite: knowledge of derivative and integral (Mathematics I). Last update: Pokorný Pavel (23.02.2018)
|
Teaching methods | ||||
Activity | Credits | Hours | ||
Konzultace s vyučujícími | 0.9 | 24 | ||
Účast na přednáškách | 1 | 28 | ||
Příprava na zkoušku a její absolvování | 2.1 | 60 | ||
Účast na seminářích | 1 | 28 | ||
5 / 5 | 140 / 140 |