



Last update: Kubová Petra Ing. (14.01.2018)



Last update: Kubová Petra Ing. (14.01.2018)
Students will be able to:
use the most important concepts related to stress and strain tensors, correctly choose and and evaluate mechanical tests, correctly interpret their results, use the correct terminology for the presentation of results and grasp the underlying theoretical principles of materials mechanics to the degree and depth necessary for a full understanding of the modern specialized literature in the field. 


Last update: Kubová Petra Ing. (14.01.2018)
R  Haupt P.: Continuum Mechanics and Theory of Materials. Springer, Berlin 2000. (ISBN 354066114X). R  Billington E. W., Tate A.: The Physics of Deformation and Flow. McGraw Hill, New York 1981. (ISBN 0070052859). R  Green D.J.: An Introduction to the Mechanical Properties of Ceramics. Cambridge University Press , Cambridge 1998. (ISBN 052159913X). R  Menčík J.: Pevnost a lom skla a keramiky. SNTL, Praha 1990. (ISBN 8003002052). R  Pabst W., Gregorová E.: Effective elastic moduli of alumina, zirconia and aluminazirconia composite ceramics, pp. 31100 in Caruta B.M. (ed.): Ceramics and Composite Materials � New Research. Nova Science, New York 2006. (ISBN 1594543704). A  Torquato S.: Random Heterogeneous Materials  Microstructure and Macrosopic Properties. Springer, New York 2002. A  Menčík J.: Strength and Fracture of Glass and Ceramics. Elsevier, Amsterdam 1992. (ISBN 0444986855). A  Pabst W., Gregorová E.: Effective thermal and thermoelastic properties of alumina, zirconia and aluminazirconia composite ceramics, pp. 77138 in Caruta B.M. (ed.): New Developments in Materials Science Research. Nova Science, New York 2007. (ISBN 1594548544). 


Last update: Kubová Petra Ing. (14.01.2018)
Lecture notes on CD (available from the lecturer). 


Last update: Kubová Petra Ing. (14.01.2018)
1. Introduction: balance equations of mechanics and thermomechanics, tensors, principal values, invariants, CayleyHamilton theorem 2. Constitutive theory: constitutive principles, deformation function, deformation gradient, deformation and strain tensors, stress tensors 3. Linear elasticity of anisotropic solids, nonlinear elasticity of isotropic solids, viscosity of nonNewtonian fluids 4. Linear elasticity of isotropic solids (uniaxial tension, simple shear, isotropic deformation), definition of elastic constants, auxetic materials 5. Linear thermoelasticity of solids and fluids (stress, heat flux, energy, entropy), isothermal and adiabatic elastic constants 6. Equations of state, principles of atomistic modeling of elastic and thermoelastic properties; property values for metals, ceramics, glasses and polymers 7. Effective elastic, thermoelastic and thermal properties of dense polycrystalline materials; measurement of elastic, thermoelastic and thermal properties 8. Temperature dependence of elastic, thermoelastic and thermal properties; hightemperature behavior of materials 9. Basic fracture mechanics: plane elasticity, stress intensity factor, fracture criteria, plastic zone, fatigue, lifetime, elastoplastic behavior 10. Testing of mechanical properties: strength, Weibull statistics, hardness, fracture toughness; temperature and grain size dependence of properties 11. Effective properties of heterogeneous materials I: Rigorous micromechanical bounds 12. Effective properties of heterogeneous materials II: Model relations for composites 13. Effective properties of heterogeneous materials III: Model relations for porous materials 14. Rheology: Viscous, viscoplastic and viscoelastic material behavior, damping 


Last update: Pabst Willi prof. Dr. Dipl. Min. (14.02.2018)
In order to enroll for this course the student must have a bachelor (B.Sc.) or comparable degree in chemistry, materials science and technology or a related field.



Last update: Pabst Willi prof. Dr. Dipl. Min. (14.02.2018)
In order to become eligible for classification the student has to pass a written qualification test. The final exam is oral and concerns the content of the whole lecture course. 
Teaching methods  
Activity  Credits  Hours  
Účast na přednáškách  1,5  42  
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi  1,5  42  
Příprava na zkoušku a její absolvování  2  56  
5 / 5  140 / 140 