SubjectsSubjects(version: 902)
Course, academic year 2021/2022
Smart Cities - AM501024
Title: Smart Cities
Guaranteed by: Department of Economics and Management (837)
Actual: from 2021
Semester: summer
Points: summer s.:3
E-Credits: summer s.:3
Examination process: summer s.:
Hours per week, examination: summer s.:2/0 [hours/week]
Capacity: unlimited / unknown (unknown)
Min. number of students: unlimited
Language: English
Teaching methods: full-time
For type: Master's (post-Bachelor)
Note: course can be enrolled in outside the study plan
enabled for web enrollment
Guarantor: Hudeček Tomáš doc. RNDr. Ph.D.
Last update: Švecová Lenka doc. Ing. Ph.D. (16.05.2022)

R: Horák, Tomáš. Logistics in Smart Cities = Logistika ve Smart Cities. 1. vydání. V Praze: České vysoké učení technické, [2017], ©2017. 39 stran. Habilitační přednáška; 29/2017. ISBN 978-80-01-06310-1.

A: TOWNSEND, Anthony M. Smart cities: big data, civic hackers, and the quest for a new utopia. New York: W.W. Norton & Company, 2014. ISBN 978-0-393-34978-8.

A: SONG, Houbing, Ravi SRINIVASAN, Tamim SOOKOOR a Sabina JESCHKE. Smart cities: foundations, principles, and applications. Hoboken, NJ: John Wiley, 2017. ISBN 978-1119226390.

Requirements to the exam - Czech
Last update: Vlachý Jan doc. Ing. Ph.D. (06.04.2020)

Docházka, prezentace vybraného tématu a semestrální práce.

Last update: Švecová Lenka doc. Ing. Ph.D. (16.05.2022)

1. Case studies of smart cities concepts in the world (Vienna, Barcelona, Copenhagen, Amsterdam, Seattle, Malmö, Freiburg). Czech smart cities projects. Methodological framework of smart cities in the Czech Republic.

2. The paradigm of economic, environmental and social sustainability in the smart citiy concepts. Pillars (energy, mobility, ICT) of infrastructure projects. Indicators and determinants of smart city projects.

3. Comparative and evaluation methods, indicators used for analysis and evaluation.

4. Smart city concepts and strategic, spatial and master planning.

5. Smart mobility. Permeability. New technologies for transportation, parking. Electromobility. Car/bike sharing. Relationship between transport and environment. Sustainable mobility.

6. Smart buildings. Energetically and environmentally sustainable construction. New building technologies and BIM. Buildings Energy consumption.

7. Municipal energy. Renewable sources. Smart grids. Energy Resiliency and Security.

8. Smart cities and Industry 4.0.

9. Information and communication technologies in the smart cities concepts. eGovernance. Smart city and digital agenda. Data and bigdata.

10. Social cohesion. Participation. The human scale of the city. Sustainable and affordable housing.

11. Environmental dimension of smart city concepts. Climate impacts. Environmental infrastructure (efficient use and water quality improvement, waste management, air pollution reduction).

12. Climate protection. Urban heat islands. Carbon foots. Externalities associated with the production of greenhouse gases, their quantification. Emissions trading. Smart City as a Carbon Zero concept.

13. Financing of smart city projects. EU support. PPP and EPC projects.

14. Economic sustainability of cities and regions.

• Managing smart city concepts. Clusters. Cooperation between the public, corporate and non-profit / civil sector.

• Psychological and social aspects of smart city concepts.

Course completion requirements
Last update: Vlachý Jan doc. Ing. Ph.D. (06.04.2020)

Docházka, prezentace vybraného tématu a semestrální práce.