Physics of Polymers - AP112001
Title: Physics of Polymers
Guaranteed by: Department of Polymers (112)
Faculty: Faculty of Chemical Technology
Actual: from 2019
Semester: both
Points: 0
E-Credits: 0
Examination process:
Hours per week, examination: 3/0, other [HT]
Capacity: winter:unknown / unknown (unknown)
summer:unknown / unknown (unknown)
Min. number of students: unlimited
State of the course: taught
Language: English
Teaching methods: full-time
Teaching methods: full-time
Level:  
Note: course is intended for doctoral students only
can be fulfilled in the future
you can enroll for the course in winter and in summer semester
Guarantor: Kuta Antonín doc. Ing. CSc.
Interchangeability : P112001
Examination dates   
Annotation -
The subject deals with molecular and supramolecular structure, network formation, free volume concept, glass transition, crystallization, elasticity, viscoelasticity, melt flow properties, yielding and fracture, electrical properties, transport properties. The course broadens and deepens information of the basic course for bachelor and magister students.
Last update: Pátková Vlasta (19.11.2018)
Aim of the course -

Students will be able to:

understand and describe fundamental physical properties and behaviour of polymer materials;

select suitable polymer material(s) for the product/application.

Last update: Pátková Vlasta (19.11.2018)
Course completion requirements -

Oral examination.

Last update: Pátková Vlasta (19.11.2018)
Literature -

R: Strobl G.: The Physics of Polymers, Springer, Berlin Heidelberg 2007, ISBN: 978-3-540-25278-8

A: Mills N.J.: Plastics. Microstructure and Engineering Applications. Third edition. Elsevier, Oxford, 2005. ISBN: 978-0-7506-5148-6

A: Ward I.M., Hadley D.W.: An Introduction to the Mechanical Properties of Solid Polymers. Xiley, Chichester 1998. ISBN: 0-471-93887-4

A: Mark J.E., Burak Erman B., Eirich F.R.: Science and Technology of Rubber. Third edition. Elsevier, New York, 2005. ISBN: 0-12-464789-3

Last update: Pátková Vlasta (19.11.2018)
Syllabus -

1. Polymer chain conformation, supramolecular structure of polymers.

2. Polymer network theories.

3. Glass transition, energy and free volume concepts.

4. Specific features of polymer crystallization; kinetics.

5. Energetic and entropic elasticity.

6. Viscoelasticity, the effect of temperature and time (frequency) under static and dynamic load.

7. The flow of polymer viscoelastic liquids - effects of conditions and molecular parameters.

8. Linear fracture mechanics. Griffith energy criterion.

9. Polymers solubility and compatibility. Network swelling.

10. Polymers behaviour in electric field

Last update: Pátková Vlasta (19.11.2018)