Statistical Thermodynamics - AP403002
Title: Statistical Thermodynamics
Guaranteed by: Department of Physical Chemistry (403)
Faculty: Faculty of Chemical Engineering
Actual: from 2019
Semester: summer
Points: summer s.:0
E-Credits: summer s.:0
Examination process: summer s.:
Hours per week, examination: summer s.:3/0, other [HT]
Capacity: unlimited / unknown (unknown)
Min. number of students: unlimited
Language: English
Teaching methods: full-time
Teaching methods: full-time
For type: doctoral
Note: course is intended for doctoral students only
can be fulfilled in the future
Guarantor: Malijevský Alexandr prof. Mgr. Ph.D., DSc.
Heyda Jan doc. RNDr. Mgr. Ph.D.
Bendová Magdalena Ing. Ph.D.
Interchangeability : P403002
Examination dates   Schedule   
Annotation -
Last update: Matějka Pavel prof. Dr. RNDr. (03.09.2019)
The purpose of the Ph.D. student course is to present the key chapters of statistical mechanics and to illustrate its advanced application on a description of thermodynamics and structure properties of model many-body interacting systems.
Aim of the course -
Last update: Pátková Vlasta (16.11.2018)

Students will understand fundamentals of statistical mechanics and will be able to predict a macroscopic behaviour of thermodynamic systems from the knowledge of interaction properties of the microscopic constituents.

Literature -
Last update: Pátková Vlasta (16.11.2018)

R: B. Widom: Statistical Mechanics (A concise introduction for chemists), Cambridge university press, Cambridge 2002.

A: J.-P. Hansen a I.R. McDonald: Theory of simple liquids, 3rd Edition, Elsevier, Amsterdam 2006.

Learning resources -
Last update: Pátková Vlasta (16.11.2018)


Teaching methods -
Last update: Pátková Vlasta (16.11.2018)

Lecture or consultations.

Syllabus -
Last update: Matějka Pavel prof. Dr. RNDr. (04.09.2019)

1) Statistical mathematics, fundamentals. Mean, fluctuation, correlation.

2) Statistical distributions. Binomial, Poisson, normal.

3) The fundamental theorem of statistical mechanics. Ergodic hypothesis. Time average versus ensemble average.

4) Microcanonical ensemble. Statistical entropy. Conditions of phase equilibrium.

5) Canonical ensemble. Boltzmann factor. Partition function.

6) Virial and equipartition theorem.

7) Grand-canonical ensemble.

8) Ideal crystal.

9) Non-interacting molecules. Vibration and rotation.

10) Non-ideal gas. Correlation functions.

11) Integral theory.

Entry requirements -
Last update: Pátková Vlasta (16.11.2018)

Physical chemistry (bachelor courses)

Course completion requirements -
Last update: Pátková Vlasta (16.11.2018)

Oral exam.