SubjectsSubjects(version: 955)
Course, academic year 2019/2020
Chemical Engineering A - B409003
Title: Chemické inženýrství A
Guaranteed by: Department of Chemical Engineering (409)
Faculty: Faculty of Chemical Engineering
Actual: from 2019 to 2019
Semester: both
Points: 6
E-Credits: 6
Examination process:
Hours per week, examination: 2/3, C+Ex [HT]
Capacity: winter:unlimited / unlimited (unknown)
summer:unknown / unknown (unknown)
Min. number of students: unlimited
State of the course: not taught
Language: Czech
Teaching methods: full-time
Teaching methods: full-time
Additional information:
Note: course can be enrolled in outside the study plan
enabled for web enrollment
you can enroll for the course in winter and in summer semester
Guarantor: Štěpánek František prof. Ing. Ph.D.
Interchangeability : N409050
Examination dates   Schedule   
This subject contains the following additional online materials
Annotation -
Two-semestral course of Chemical Engineering A/B will give to students the knowledge and skills important, e. g., for development of new technological processes in area of industrial R&D, in particular for scale-up from laboratory to industrial process. Basic transport phenomena will be briefly introduced (mass, energy and momentum balances). Selected unit operations (in area of heat exchange, hydrodynamical, separation and particle technology processes as well as chemical reactors). Finally, the methodology for whole process synthesis will be discussed.
Last update: Kubová Petra (04.12.2017)
Aim of the course -

Students will be able to:

  • to explain principles of selected unit operations in chemical technology processes
  • to carry out approximative design and control calculations of selected unit operations
  • to select an optimal choice of process alternatives using chemical-engineering analysis
Last update: Kubová Petra (04.12.2017)
Literature -

R: Schreiberová et al.l.: Chemické inženýrství I, skriptum VŠCHT v Praze, 3. vyd. 2011 (in Czech)

A: J. R. Couper et al.: Chemical Process Equipment Selection and Design, Butterworth-Heinemann, 2010

Last update: Kubová Petra (04.12.2017)
Learning resources - (in Czech)

Last update: Kubová Petra (04.12.2017)
Syllabus -

1. Introduction to chemical engineering. Basic terms (system, state, stream, unit operation etc.)

2. Material balances - systems without / eith chemical reactions. Recycle.

3. Energy balances. Open / closed systems, phase changes, chemical reactions.

4. Basics of hydromechanical processes. Hydrostatics, fluid flow through pipes / porous layer.

5. Fluid transport - pumps, mixing.

6. Sedimentation, fluidization. Forces acting on a particle surrounded by a fluid, fluidization devices, description of fluidization layer, sedimentation velocity of an isolated particle, centrifuge, cyclones, dust separators

7. Filtration. Devices for filtration, kinetics of filtration with filtration cake, filtration cycle.

8. Powder materials - characterization, transport, mixing, segregation, classification.

9. Basics of heat transfer. Conduction, heat convection, natural and forced flow, heat convection in systems with phase change, heat passage.

10. Heat exchangers - principles and devices, theoretical description.

11. Evaporators - devices, material and heat balances.

12. Crystallization. Nucleation and crystal growth, oversaturation, material and enthalpy balances, devices for crystallization.

13. Drying of solid materials, properties of humid air, batch and continuous operation, dryers.

14. Overview of unit operations.

Last update: Kubová Petra (04.12.2017)
Registration requirements -



Last update: Štěpánek František (15.02.2018)
Course completion requirements -

assessment, exam

Last update: Štěpánek František (15.02.2018)
Teaching methods
Activity Credits Hours
Konzultace s vyučujícími 0.5 14
Účast na přednáškách 1 28
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi 1.5 42
Příprava na zkoušku a její absolvování 1.5 42
Účast na seminářích 1.5 42
6 / 6 168 / 168
Coursework assessment
Form Significance
Continuous assessment of study performance and course -credit tests 60
Oral examination 40