SubjectsSubjects(version: 877)
Course, academic year 2020/2021
  
Inovation of structure products - B409015
Title: Inovace strukturovaných produktů
Guaranteed by: Department of Chemical Engineering (409)
Actual: from 2020
Semester: winter
Points: winter s.:4
E-Credits: winter s.:4
Examination process: winter s.:
Hours per week, examination: winter s.:2/1 C+Ex [hours/week]
Capacity: unlimited / unlimited (unknown)
Min. number of students: unlimited
Language: Czech
Teaching methods: full-time
Level:  
For type:  
Note: course can be enrolled in outside the study plan
enabled for web enrollment
Guarantor: Kosek Juraj prof. Dr. Ing.
Grof Zdeněk Ing. Ph.D.
Interchangeability : N409075
Annotation -
Last update: Pátková Vlasta (15.01.2018)
The purpose of this subject is to explain the differences in concepts of commodity and specialty chemicals. Center of our attention is not the optimum product of commodity chemicals, but the search for various available solutions offering the desired properties. Number of theoretical and practical concepts for the design of new or innovation of existing products is introduced. Teaching involves number of case studies well illustrating various concepts.
Aim of the course -
Last update: Pátková Vlasta (15.01.2018)

Students shall be able to:

1. Understand differences between commodity and specialty chemicals and different manufacturing, design and R&D of these chemicals.

2. Identify the desired innovations, perform economic comparison of available variants, select the best option.

3. Design or select energetically non-demanding solutions or solutions involving renewable energy sources.

4. Understand the relationships between material micro-structure and their properties.

Literature -
Last update: Pátková Vlasta (15.01.2018)

R Cussler E.L., Moggrridge G.D.: Chemical Product Design, Cambridge University Press (2001).

R Letcher T.M.: Future Energy, Elsevier (2008).

Learning resources -
Last update: Pátková Vlasta (15.01.2018)

PowerPoint presentations will be available after the lectures.

Teaching methods -
Last update: Pátková Vlasta (15.01.2018)

Lectures, seminars and homework.

Requirements to the exam -
Last update: Pátková Vlasta (15.01.2018)

Two written tests within the course. Individual mini-project. Oral exam.

Syllabus -
Last update: Pátková Vlasta (15.01.2018)

1. Concepts of product and process engineering - differences in manufacturing, R&D and innovations for commodity and specialty chemicals.

2. Identification of innovation needs in various market segments. Objective characterization of taste, flavor and viscosity. Case studies - chocolate, cream lotion.

3. Selection of the best innovation among several options. Case studies - bateries, exhaust gas muffler, separation of nitrogen from natural gas.

4. Economical comparison of available options: water desalination, milk processing.

5. Selection of best solution based on thermodynamics and/or kinetics: coffee cup, purification of antibiotics, improvement of cream lotion.

6. Solutions available for the local accumulation of energy and heat. Ventilation of buildings, control of humidity.

7. Selected concepts of renewable energy generation and storage including flow-through batteries. Biofuels, photovoltaics. Heat pumps. Stirling engine. Low-temperature Rankin cycle.

8. Batteries and their construction. Comparison of available batteries with those in the development stage.

9. Specialty products with micro-structure. Concept of soft matter.

10. Mechanical and rheological properties of materials and their temperature dependence. Toughness and impact resistance.

11. Dispersions in product engineering. Suspension, emulsion, foam, paste, alloy, aerosol.

12. Modification of wetting and other surface properties of materials.

13. How to achieve the desired optical, heat or electric or sound insulation properties.

14. Polymers with desired sorption and transport properties. Food packaging materials.

Registration requirements -
Last update: Pátková Vlasta (15.01.2018)

None.

Teaching methods
Activity Credits Hours
Účast na přednáškách 1 28
Práce na individuálním projektu 1 28
Příprava na zkoušku a její absolvování 1,5 42
Účast na seminářích 0,5 14
4 / 4 112 / 112
 
VŠCHT Praha