Discrete Mathematics - B413011
Title: Diskrétní matematika
Guaranteed by: Department of Mathematics, Informatics and Cybernetics (446)
Faculty: Faculty of Chemical Engineering
Actual: from 2022
Semester: summer
Points: summer s.:3
E-Credits: summer s.:3
Examination process: summer s.:
Hours per week, examination: summer s.:2/1, MC [HT]
Capacity: unknown / unknown (unknown)
Min. number of students: unlimited
State of the course: taught
Language: Czech
Teaching methods: full-time
Teaching methods: full-time
Level:  
Additional information: https://um.vscht.cz/studium/predmetycs
Note: course can be enrolled in outside the study plan
enabled for web enrollment
Guarantor: Szala Leszek Marcin RNDr. Ph.D.
Classification: Mathematics > Mathematics General
Interchangeability : N413018
Examination dates   
This subject contains the following additional online materials
Annotation -
The subject is designed for all students in bachelor programmes, especially aimed at informatics. Students learn basic notions and algorithms in discrete mathematics which are used in informatics
Last update: Kubová Petra (01.05.2019)
Aim of the course -

General skills:

1. basic terms in discrete mathematics

2. knowledge and understanding of basic algorithms

3. individual problem solving

Last update: Kubová Petra (01.05.2019)
Course completion requirements - Czech

Předmět je zakončen testem, na jehož základě bude udělen klasifikovaný zápočet.

Last update: MAXOVAJ (14.05.2019)
Literature -

R: Turzík, Pavlíková: Diskrétní matematika, skripta, VŠCHT Praha, 2007, ISBN:978-80-7080-667-8

Last update: Kubová Petra (01.05.2019)
Teaching methods -

Lectures and seminars

Last update: Kubová Petra (01.05.2019)
Syllabus -

1.Sets, relations, posets.

2.Basic combinatorial notions.

3.Counting of objects.

4.Logics. Boolean functions.

5.Finite fields

6.Basic notions of graph theory.

7.Trees.

8.Paths in graphs. The shortest path in a graph.

9.Euler and Hamiltonian graphs.

8.Spanning tree and greedy algorithm.

9.Quick sorting.

10.Plannar graphs and their charecterization.

11.Coloring of graphs.

12.Four colors problem.

13.Polynomial and exponential algorithms. Classes P, NP and co-NP.

14.Application of graph theory in theory of games. Game NIM and winning strategy.

Last update: Kubová Petra (01.05.2019)
Learning resources -

http://www.vscht.cz/mat/ZMO/Kap3.mws

http://teorie-grafu.cz/

Last update: Kubová Petra (01.05.2019)
Registration requirements -

Mathenatics I or Mathenatics A

Last update: MAXOVAJ (14.05.2019)