SubjectsSubjects(version: 954)
Course, academic year 2019/2020
  
Discrete Optimalization - D413004
Title: Diskrétní optimalizace
Guaranteed by: Department of Mathematics (413)
Faculty: Faculty of Chemical Engineering
Actual: from 2011 to 2020
Semester: winter
Points: winter s.:0
E-Credits: winter s.:0
Examination process: winter s.:
Hours per week, examination: winter s.:0/0, other [HT]
Capacity: unknown / unknown (unknown)
Min. number of students: unlimited
State of the course: taught
Language: Czech
Teaching methods: full-time
Teaching methods: full-time
Level:  
Note: course is intended for doctoral students only
can be fulfilled in the future
Guarantor: Turzík Daniel doc. RNDr. CSc.
Examination dates   Schedule   
Annotation - Czech
Studenti se seznámí se základními pojmy teorie grafů. Probírají se základní úlohy kombinatorické optimalizace jako úloha nejkratší cesty, úlohy o párování, barvení grafu apod. Mnohé úlohy jsou formulovány jako úlohy lineárního programování, či úlohy celočíselného lineárního programování. Ukazuje význam duality pro řešení těchto úloh. Dále se probírá výpočetní složitost vyšetřovaných úloh. Zkoumá se vztah polynomiálně a nedeterministicky polynomiálně řešitelných úloh.
Last update: Turzík Daniel (01.10.2015)
Aim of the course - Czech

Studenti porozumí základním algoritmům diskrétní optimalizace, jejich složitosti a možnosti aplikací. Naučí se popis kombinatorických úloh pomocí lineárního programování.

Last update: Turzík Daniel (01.10.2015)
Literature - Czech

Alexander Schrijver: A Course in Combinatorial Optimization

Last update: Turzík Daniel (01.10.2015)
Syllabus - Czech

1. Základní pojmy teorie grafů.

2. Konvexní množiny polyedry a polytopy.

3. Lineární programování. Dualita.

4. Úloha nejkratší cesty.

5. Stromy. Minimální kostra grafu.

6. Párování a pokrytí v bipartitních grafech.

7. Vážené párování. Polytop párování.

8. Toky v sítích.

9. Maximální tok a algoritmy pro jeho nalezení.

10. Slova, problémy, algoritmy.

11. Výpočetní složitost.Třídy P, NP, co-NP.

12. NP-úplné problémy. Redukce.

13. Matroidy. Příklady a základní vlastnosti.

14. Hladový algoritmus.

Last update: Turzík Daniel (01.10.2015)
Registration requirements - Czech

Matematika I. a Matematika II.

Last update: Turzík Daniel (01.10.2015)
 
VŠCHT Praha