Nanostructured engineering materials - M106008
Title: Nanostrukturované konstrukční materiály
Guaranteed by: Department of Metals and Corrosion Engineering (106)
Faculty: Faculty of Chemical Technology
Actual: from 2020
Semester: winter
Points: winter s.:3
E-Credits: winter s.:3
Examination process: winter s.:
Hours per week, examination: winter s.:2/0, Ex [HT]
Capacity: unlimited / unknown (unknown)
Min. number of students: unlimited
State of the course: taught
Language: Czech
Teaching methods: full-time
Teaching methods: full-time
Level:  
Note: course can be enrolled in outside the study plan
enabled for web enrollment
Guarantor: Novák Pavel prof. Ing. Ph.D.
Interchangeability : N106036
Examination dates   
This subject contains the following additional online materials
Annotation -
This subject introduces the methods of preparation, properties and applications of nanostructured metallic and composite structural materials and coatings.
Last update: Kubová Petra (12.01.2018)
Aim of the course -

Students will be able to:

Descibe the basic mechanisms leading to the formation of nanostructured materials, mainly based on metals and their alloys.

Describe and effectively choose the techniques of preparation of metallic and composite nanostructured engineering materials.

Choose nanostructured materials according to the desired application.

Last update: Kubová Petra (12.01.2018)
Course completion requirements -

Success in written exam, submission of the literature review (project report).

Last update: Novák Pavel (20.02.2018)
Literature -

R:Cahn R.W., Haasen P., Cramer E.J., Materials Science and Technology, Vol. 15 Processing of Metals and Alloys, Weinheim, VCH, 1991, 3527268286.

R:G. Cao: Nanostructures & Nanomaterials, Synthesis, Properties & Applications, Imperial College Press, London, 2004, 1860944159.

A:Edelstein A.S., Cammarata R.C., Nanomaterials: Synthesis, Properties and Applications, Institute of Physics Pub., Bristol; 1998, 0750305789.

Last update: Kubová Petra (12.01.2018)
Syllabus -

1. Classification of nanostructured engineering materials.

2. Mechanical properties - elastic and plastic behaviour, strength, yield strength.

3. Mechanical properties - ductility, hardness, toughness.

4. Physical and chemical properties.

5. Production by powder metallurgy - production of powders by mechanical and chemical methods.

6. Production by powder metallurgy - production of powders by rapid solidification.

7. Production by powder metallurgy - compaction of powders.

8. Production by severe plastic deformation - theory.

9. Production by severe plastic deformation - technology.

10. Preparation of nanostructured and nanocomposite coatings.

11. Light nanostructured metallic materials.

12. Tool materials with ultrafine structure.

13. Nanostructured layers and coatings.

14. Current trends in development of nanostructured engineering materials.

Last update: Kubová Petra (12.01.2018)
Learning resources -

http://www.knovel.com/web/portal/basic_search/display?_EXT_KNOVEL_DISPLAY_bookid=1334

Last update: Kubová Petra (12.01.2018)
Registration requirements -

Physical Chemistry I

Physics of Metals

Last update: Kubová Petra (12.01.2018)
Teaching methods
Activity Credits Hours
Účast na přednáškách 1 28
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi 0.5 14
Práce na individuálním projektu 0.5 14
Příprava na zkoušku a její absolvování 1 28
3 / 3 84 / 84