SubjectsSubjects(version: 916)
Course, academic year 2022/2023
  
Organic Reaction Mechanisms - M110006
Title: Mechanismy organických reakcí
Guaranteed by: Department of Organic Chemistry (110)
Faculty: Faculty of Chemical Technology
Actual: from 2022
Semester: winter
Points: winter s.:5
E-Credits: winter s.:5
Examination process: winter s.:
Hours per week, examination: winter s.:2/2, C+Ex [HT]
Capacity: 25 / 25 (unknown)
Min. number of students: unlimited
Language: Czech
Teaching methods: full-time
Level:  
For type: Master's (post-Bachelor)
Note: course can be enrolled in outside the study plan
enabled for web enrollment
Guarantor: Kovaříček Petr Ing. Ph.D.
Interchangeability : N110015
Is interchangeable with: N110015
This subject contains the following additional online materials
Annotation -
Last update: Fialová Jana (04.01.2018)
The course is focused on mechanistic interpretation of reactions and processes in organic chemistry and their application in prediction of reaction parameters, product composition and stereochemistry of synthetically useful organic reactions.
Aim of the course -
Last update: Fialová Jana (04.01.2018)

Students will be able to:

understand the mechanisms of substitution, elimination and addition reactions.

predict the course of reactions.

suggest suitable mechanism of novel organic reaction.

Literature -
Last update: Kovaříček Petr Ing. Ph.D. (11.02.2022)

R. B. Grossman, The Art of Writing Reasonable Organic Reaction Mechanisms, Springer, Berlin 2006. 978-0-387-21545-7

F. A. Carey & Richard J. Sundberg, Advanced Organic Chemistry - Part A: Structure and Mechanisms, Springer, Boston, MA 2007. 978-0-387-44899-2

O. Cervinka a kol., Mechanizmy organickych reakci, SNTL/ ALFA, Praha 1981. 0463281

Learning resources -
Last update: Kovaříček Petr Ing. Ph.D. (11.02.2022)

The e=learning portal contains all slides from lectures as well as additional information sources and animations.

Requirements to the exam - Czech
Last update: Kovaříček Petr Ing. Ph.D. (19.02.2022)

PODROBNÉ SYLABY

1. Historický úvod do teorie struktury hmoty a teorie chemické vazby. Přehled grafického formalismu užívaného v organické chemii. Repetitorium atomových a molekulových orbitalů. Úvod do teorie QMOT (qualitative molecular orbital theory). Rozdělení tříd transformací a mechanismů. Kyseliny a báze v organické chemii, acidobazické organické reakce. Rozpoznání jednotlivých tříd mechanismů dle struktur a podmínek reakce.

2. Mechanismy SN2, SRN1, inserce kovů, eliminace E2 a E1cb, eliminačně-adiční mechanismus, α-eliminace, karbeny a karbenoidy, Zajcevovo a Hoffmanovo pravidlo pro eliminace. Porovnání rozhodujících faktorů pro průběh substituce a eliminace.

3. Adice na karbonyl, modely Burgi-Dunitzův a Felkin-Ahnův, aldolizace, enoláty kinetické a termodynamické, ylidy, Knoevenagelova a aldolová kondenzace, reakce karbonylu s (formálním) přesmykem hydridu (benzoinová kondenzace, Canizzaro, Tiščenko, reakce Oppenauerova a Meerwein-Ponndorf-Verlay), adice hydridu na karbonyl, Michaelova adice, substituce na karbonylu, adičně-eliminační mechanismus, Stetterova syntéza, haloformová (Liebenova) reakce.

4. Substituce na alkenech a arenech v bazickém prostředí, Michaelova substituce, Morita-Baylis-Hillman, nukleofilní substituce na aromátech, adičně-eliminační a eliminačně-adiční mechanismus, Meisenheimerův komplex, SRN1, metalace a výměna halogen-lithium na aromátech a sp2 uhlíku, reakce na sp uhlíku. Baldwinova pravidla pro cyklizace. Přesmyky v bazickém prostředí: benzilový, Favorského, Wolffův, Curtiův, Hoffmannův, Lossenův, Smilesův, Stevensův, Pummererův, Sommelet-Hauserův, reakce Nierensteinova, Arndt-Eistertova homologace.

5. Tvorba a stabilita karbokationtu, geometrie karbokationtu, rezonantní formy, mechanismy SN1 a E1, rozhodující faktory pro průběh substituce a eliminace v kyselém prostředí, příklady SN1, E1 a SN2 probíhající v kyselém prostředí, přesmyky karbokationtu, elektrofilní adice na násobné vazby, Markovnikovo pravidlo, halonium a halolaktonizace, mechanismus SEAr, regioselektivita z pohledu induktivních a mezomerních efektů, rodina Friedel-Craftsových mechanismů (alkylace, acylace, Houben–Hoesch, Bischler-Napieralski), formylace (Gattermann, Gattermann-Koch, Vilsmeier-Haack, Duff), Sommeletova reakce, ipso- a α-substituce, reaktivita diazoniových solí (Meerweinova arylace, Gomberg-Bachmann, Pschorr, Japp-Klingemann, Sandmayer, Schiemann), reaktivita alifatických diazonií.

6. Reaktivita karbonylu v kyselém prostředí, tvorba acetalu, aminalu a iminia, enolizace v kyselém prostředí, princip mikroskopické reversibility, reakce aldolová, Michaelova a Mukaiyamova, Robinsonova anulace, reakce Mannichova, Hell-Vollhardt-Zelinskeho, reaktivita trojných vazeb v kyselém prostředí, přesmyky v kyselém prostředí (Wagner-Meerwein, 1,2-hydridový a alkylový, pinakolový), Bayer-Villigerova oxidace, přesmyky Beckmannův, Stieglitzův a Bambergererův.

7. Srovnání polárních mechanismů dle funkčních skupin a dle tříd transformací v kyselém vs. zásaditém prostředí, srovnání přesmykův kyselém a zásaditém prostředí (Tiffeneau Demjanov, Hofmann Martius, Fisher Hepp, Fries vs. Ramberg Bäcklund, Tiemann, Neber, α-ketolový, Fritsch–Buttenberg–Wiechell, Seyferth–Gilbert homologace. Esterifikace a saponifikace, 11 mechanismů dle klasifikace AAc2 atd. Nejběžnější organické reakce fosforu (Mitsunobu, Arbuzov, Staudinger, Wittig, Horner-Wadsworth-Emmons, Appel, Corey-Fuchs, Pudovik, Kabachnik-Fields), síry (ylidy, Johnson-Corey-Chaykovský, Juliova olefinace) a křemíku (Petersonova olefinace, Brookův přesmyk, od/chránění alkoholu). Multikomponentní reakce (Paal-Knorr, Strecker, Bucherer-Bergs, Hantzsch, Biginelli, Petasis, Gewald, Passerini, Ugi). Deduktivní diagramy pro racionální volbu mechanismu.

8. Základní roztřídění pericyklických reakcí, teorie QMOT a symetrie hraničních orbitalů v pericyklických reakcích, reversibilita, termické vs. fotochemické řízení reakce. Elektrocyklické reakce, Favorského přesmyk, oxyallyl-cyklopropanon rovnováha, Nazarovova cyklizace. Stereospecificita pericyklických reakcí, konrotační a disrotační tranzitní stav, Woodward-Hoffmannova pravidla, Bergmanova cyklizace. Cykloadiční reakce a jejich třídění, Diels-Alderova reakce, inverse-demand modifikace, cykloadice singletového kyslíku, stereospecificita, regio- a stereo-selektivita cykloadičních reakcí, suprafaciální/antarafaciální přístup, Sharplessova dihydroxylace, dipolární cykloadice, Huisgensova cykloadice a CuAAC, [2+2] cykloadice (Wittig, Paterno-Büchi, kumuleny), cheletropické reakce, pericyklické hydrogenace a hydroborace.

9. Sigmatropní přesmyky a jejich klasifikace, přesmyky Cope, aza-Cope, Claisen, stereochemie sigmatropních přesmyků a Woodward-Hoffmannova pravidla. Prominentní příklady reakcí se sigmatropním přesmykem (Fisherova syntéza indolů, přesmyky Overmanův, Sommelet-Hauserův, [2,3]-Wittigův). Enové reakce, metala-enové reakce, retro-hetero-enové reakce, mechanismus Ei, Copeho a Čugajevova eliminace, oxidace SeO2 a Swernova.

10. Reakce radikálové a fotochemické, elektronová struktura radikálů a excitovaných stavů, princip interakce elektromagnetického záření s hmotou, stabilita radikálů, persistentní radikály a spinové pasti, radikálová iniciace termicky a fotochemicky, použití kovů a jejich solí, typické reakce radikálů, redukce kovy (Clemmensen, Birch, Bouveault-Blanc), ketylové radikály a jejich reakce (pinakolová, McMurry, acyloinová, Dowd-Beckwith), [1,2]-Wittigův přesmyk, thiol-enová click reakce, propagace řetězových reakcí, autooxidace. Norrishovo štěpení typu I a II, photo-(de)-caging, foto-Friesův přesmyk, Bartonova a Hofmann-Löffler-Freytagova reakce, isomerizace násobných vazeb a fotopřepínače, Feringovy motory.

11. Stručný úvod do mechanismů reakcí katalyzovaných přechodnými kovy, základní mechanistické kroky, stručný přehled cross-couplingových reakcí, reakce Crabbehe a Pauson-Khandova, metateze, Tebbeho olefinace.

PODROBNÉ INFORMACE O UKONČENÍ PŘEDMĚTU:

Předmět je zakončen zkouškou. Student může přistoupit ke zkoušce poté, co mu byl udělen zápočet.

Zápočet se uděluje za úspěšné absolvování zápočtových testů a prezentování miniprojektu na vybraný mechanismus na semináři v průběhu semestru. Testy jsou dva, zpravidla se píší 8. a 14. týden semestru na seminářích. Za úspěšně absolvovaný test se považuje takový, ve kterém student získal nejméně µ - 2σ (střední hodnota mínus dvě standardní odchylky) bodů dle normálního rozdělení výsledků všech studentů v tomto testu v daném kurzu a akademickém roce. Testy trvají 120 minut.

Zkouška se skládá z písemné a ústní části. Podmínkou účasti na písemné zkoušce je zápočet zapsaný v SISu. Písemná část zkoušky trvá 180 minut a je klasifikována 100 body. K ústní části zkoušky může student přistoupit pouze pokud získal z písemné části alespoň 50 bodů. Pokud tuto podmínku student nesplnil, je klasifikován známkou "F". Pokud student neuspěje u ústní zkoušky, musí znovu opakovat i písemnou část zkoušky bez ohledu na výsledek té předchozí.

Pokud se student ze závažných důvodů nestihl odhlásit ze zkoušky, může se omluvit bez zbytečného odkladu přímo zkoušejícímu. V tomto případě vždy uvede důvod nepřítomnosti na zkoušce. Neomluvená neúčast nebo neuznaná omluva nepřítomnosti u zkoušky se hodnotí klasifikací "F".

Materiály ke studiu jsou dostupné na e-learningovém portálu.

Syllabus -
Last update: Fialová Jana (04.01.2018)

1. General terms. Structural and electronic effects influencing a reaction course. Transition state theory.

2. Electrophilic substitution on sp3 hybridized carbon atom. Molecularity of the chemical reaction. Synthetic use and examples.

3. Nucleophilic substitution on sp3 hybridized carbon atom. Molecularity of chemical the reaction. Synthetic use and examples. Neighboring group participation in the reaction outcome and mechanism. Qualitative and quantitative evaluation of the nucleophiles and leaving groups.

4. Electrophilic aromatic substitution. Molecularity of the chemical reaction. Synthetic use and examples. Evaluation of substituents on aromatic systems and their influence on the reaction course.

5. Nucleophilic aromatic substitution. Meisenheimer complex.

6. Radical substitutions.

7. Eliminations. Zaitsev and Hoffmann rules. Regioselectivity of the reaction.

8. Additions. Steric effects and their influence on the reaction course. Application of the reaction in organic synthesis.

9. Diels- Alder type reaction. Cyclo-additions. Synthetic examples.

10. Nucleophilic additions on polarized bonds. Reaction of carbonyl compounds with organometalic reagents.

11. Oxidations and reductions.

12. Molecular rearrangements. Wagner- Meerwein rearrangements.

13. Photochemical reactions

Registration requirements -
Last update: Kundrát Ondřej Ing. Ph.D. (08.01.2018)

No.

Course completion requirements - Czech
Last update: Kovaříček Petr Ing. Ph.D. (19.02.2022)

Úspěšné absolvování zápočtových testů, prezantace miniprojektu na semináři a absolvování zkoušky.

Teaching methods
Activity Credits Hours
Konzultace s vyučujícími 0,5 14
Účast na přednáškách 1 28
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi 1 28
Příprava na zkoušku a její absolvování 1,5 42
Účast na seminářích 1 28
5 / 5 140 / 140
 
VŠCHT Praha