|
|
|
||
The course objectives include: introduction to fundamental bioinformatic approaches and tools allowing analyzing nucleotide and protein sequences, including critical interpretation of analysis outputs; survey of potential uses of bioinformatic analyses to address experimental tasks; and detailed insight into practical aspects of related molecular biology and proteomic methods and approaches.
Last update: Hladíková Jana (13.12.2017)
|
|
||
Students will be able to: Use publicly accessible bioinformatics tools and nucleotide and protein databases. Independently design a strategy to analyze the sequence data, critically interpret the outcome of analyses and propose an experimental approach to prove the in silico predictions correct. Taking advantage from bioinformatic analyses of nucleotide and protein sequences, propose complex, feasible solution for a successful molecular biology experiment. Last update: Hladíková Jana (13.12.2017)
|
|
||
R: Cvrčková F., Úvod do praktické bioinformatiky, Academia, 2006, ISBN 80-200-1360-1 A: Pazos F., Chagoyen M., Practical protein bioinformatics, Springer International Publishing, 2015, ISBN 978-3-319-12726-2 A: Green M.R., Sambrook J., Molecular Cloning: A Laboratory Manual (4th ed.), Cold Spring Harbor Laboratory Press, 2012, ISBN 1936113422
Last update: Šantrůček Jiří (14.09.2023)
|
|
||
Předmět je ukončen vypracováním individuálního projektu a jeho obhajobou. Last update: Lipovová Petra (09.08.2023)
|
|
||
1. Bioinformatics, cross-database search platforms for data mining. 2. Databases and software for nucleotide sequence analyses. 3. Gene function predictions, prediction of promoters and regulatory elements. 4. Design and practical aspects of PCR experiment. 5. Central dogma upturned: a strategy to isolate coding sequence. 6. Practical aspects and method selection in DNA and DNA-binding protein analyses. 7. Practical aspects and method selection in RNA and transcript level analyses. 8. Proteomic servers and databases. Tools for protein sequence alignments. 9. Protein modifications. In silico prediction and experimental proof. 10. Protein secondary structure and hydropathy profile. In silico prediction and experimental proof. 11. Protein quaternary structure and oligomerization state. In silico prediction and experimental proof. 12. Membrane proteins. Determination of protein topology in biological membrane, the surface properties of proteins and detergents. 13. Native state of protein. Intracellular localization and interactions of protein. 14. Gene ontology. Processing of data from proteomic experiments. Last update: Šantrůček Jiří (23.01.2018)
|
|
||
https://www.ncbi.nlm.nih.gov/ https://www.ebi.ac.uk/services https://www.expasy.org/ https://www.uniprot.org/ https://bio.tools/
Lectures are available (in czech language) at e-learning.vscht.cz Last update: Šantrůček Jiří (14.09.2023)
|
|
||
Molecular Biology Genetic Engineering Last update: Hladíková Jana (13.12.2017)
|
Teaching methods | ||||
Activity | Credits | Hours | ||
Konzultace s vyučujícími | 0.2 | 6 | ||
Obhajoba individuálního projektu | 0.1 | 2 | ||
Práce na individuálním projektu | 0.7 | 20 | ||
Účast na seminářích | 1 | 28 | ||
2 / 2 | 56 / 56 |