Molecular modelling - M320043
Title: Molekulové modelování
Guaranteed by: Department of Biochemistry and Microbiology (320)
Faculty: Faculty of Food and Biochemical Technology
Actual: from 2019 to 2021
Semester: winter
Points: winter s.:3
E-Credits: winter s.:3
Examination process: winter s.:
Hours per week, examination: winter s.:2/0, Ex [HT]
Capacity: unlimited / unknown (unknown)
Min. number of students: unlimited
Language: Czech
Teaching methods: full-time
Teaching methods: full-time
Level:  
For type: Master's (post-Bachelor)
Guarantor: Spiwok Vojtěch prof. Ing. Ph.D.
Raich Ivan doc. Dr. Ing.
Lankaš Filip doc. Ing. Ph.D.
Interchangeability : N320095
Examination dates   Schedule   
This subject contains the following additional online materials
Annotation -
Last update: Kubová Petra Ing. (15.01.2018)
The subject covers theoretical backgrounds and practical examples of application of computational methods on molecular systems, namely molecular mechanics and quantum mechanics. It includes small molecules, as well as biomolecules and supra-molecular systems.
Aim of the course -
Last update: Kubová Petra Ing. (15.01.2018)

Students will be able to:

design, apply and analyse results of molecular modelling calculations (molecular mechanics, basic quantum chemistry methods, docking).

Literature -
Last update: Kubová Petra Ing. (15.01.2018)

R: D.C. Young: Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems. John Wiley & Sons, Inc., 2002, ISBN: 9780471333685 (print), 9780471220657 (online)

Learning resources -
Last update: Spiwok Vojtěch prof. Ing. Ph.D. (18.12.2023)

https://web.vscht.cz/spiwokv/molmod/

https://web.vscht.cz/~spiwokv/modelovani2/

Syllabus -
Last update: Kubová Petra Ing. (15.01.2018)

1. 3D geometry, Cartesian coordinates, Z-matix, connectivity, PDB file

2. Inspection of 3D models, bond lengths, angles, torsions, rendering

3. Structure-potential energy relationship, different levels of theory, potential energy hypersurface

4. Molecular mechanics, ball-spring model, single point calculations

5. Schrödinger equation, wave function, approximative solutions, methods (including semi-empirical), variational methods, basis sets

6. Prediction of properties (charges, reaction kinetics and mechanisms, spectral and chiroptical properties)

7. Geometry optimization, local minima problem

8. Molecular vibrations, normal modes

9. Solvation, implicit and explicit solvent, continuum electrostatics

10. Molecular dynamics, PBC, NPT, NVT, thermostats, constraints

11. Sampling, data collection, analysis and visualisation

12. Mesoscopic simulations (coarse graining, Brownian simulations)

13. Free energy, metadynamics and related methods

14. Example studies

Registration requirements -
Last update: Kubová Petra Ing. (15.01.2018)

Physical Chemistry

Teaching methods
Activity Credits Hours
Konzultace s vyučujícími 0.5 14
Účast na přednáškách 1 28
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi 0.5 14
Příprava na zkoušku a její absolvování 1 28
3 / 3 84 / 84
Coursework assessment
Form Significance
Regular attendance 10
Oral examination 90