SubjectsSubjects(version: 887)
Course, academic year 2020/2021
  
Experimental Identification - M445007
Title: Experimentální identifikace
Guaranteed by: Department of Computing and Control Engineering (445)
Actual: from 2020
Semester: winter
Points: winter s.:5
E-Credits: winter s.:5
Examination process: winter s.:
Hours per week, examination: winter s.:2/2 C+Ex [hours/week]
Capacity: unlimited / unlimited (unknown)
Min. number of students: unlimited
Language: Czech
Teaching methods: full-time
Level:  
For type: Master's (post-Bachelor)
Note: course can be enrolled in outside the study plan
enabled for web enrollment
Guarantor: Kukal Jaromír doc. Ing. Ph.D.
Bártová Darina Ing. Mgr. Ph.D.
Annotation -
Last update: Pátková Vlasta (19.04.2018)
The main goal of the course is to familiarize the students with the common generally valid principles of system identification both analogue and discrete
Aim of the course -
Last update: Pátková Vlasta (19.04.2018)

Students will be able to:

• work with common identification methods

• work with their implementation

• evaluate their efficiency

• students will take part in one large complex work (beginning with data measuring up to model formulation)

• students will use MATLAB interface for model identification

Literature -
Last update: Pátková Vlasta (19.04.2018)

R:Šimandl M.,Identifikace systémů a filtrace, Vydavatelství ZČU, Plzeň,1997,8070821701

R:Noskievič P.,Modelování a identifikace systémů,Montanex a.s.,Ostrava,1999,80722250302

A:Ljung L.,Systém Identification. Theory for the User,Prentice Hall PTR,N.J.,1999,0136566952

Learning resources -
Last update: Pátková Vlasta (19.04.2018)

internal materials

Requirements to the exam -
Last update: Pátková Vlasta (19.04.2018)

Student will obtain the credits after the successful finishing

Syllabus -
Last update: Pátková Vlasta (19.04.2018)

1. Experimental identification - basic scheme, wide and narrow definition of the branch

2. Structure model selection and process dynamics

3. Signals and their characteristics, signal discretization. Input testing signals, their selection

4. Adequacy criteria for models and processes, least square method, its modification

5. Identification methods classification, deterministic models in time and frequency domain

6. Dynamic system identification via transfer characteristics - project I

7. Methods of Strejc, Broid, progressive integration - project II

8. Frequency domain identification - method of Kardašov-Karnjušin

9. Frequency domain identification - correlation and spectral analysis, statistic dynamics methods

10. Stochastic models of discrete type, noise models, drift description

11. Parameter estimation methods for discrete models, least square - simple and weighted

12. Generalized, extended, repeated LSM, maximum credibility method

13. Numeric solution of LSM, recursive methods, robust identification, bootstrap, jackknife - project III

14. Large project

Registration requirements -
Last update: Pátková Vlasta (19.04.2018)

Matematics II

Course completion requirements - Czech
Last update: Bártová Darina Ing. Mgr. Ph.D. (26.04.2018)

studenti budou hodnoceni zápočtem za samostatné práce/projekty v seminářích a známkou za ústní zkoušku

Teaching methods
Activity Credits Hours
Konzultace s vyučujícími 0,5 14
Účast na přednáškách 1,5 42
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi 0,5 14
Práce na individuálním projektu 1 28
Příprava na zkoušku a její absolvování 0,5 14
Účast na seminářích 1 28
5 / 5 140 / 140
 
VŠCHT Praha