SubjectsSubjects(version: 861)
Course, academic year 2019/2020
  
Engineering Optimization - M445011
Title: Inženýrská optimalizace
Guaranteed by: Department of Computing and Control Engineering (445)
Actual: from 2019
Semester: summer
Points: summer s.:5
E-Credits: summer s.:5
Examination process: summer s.:
Hours per week, examination: summer s.:2/2 C+Ex [hours/week]
Capacity: unlimited / unlimited (unknown)
Min. number of students: unlimited
Language: Czech
Teaching methods: full-time
Level:  
For type: Master's (post-Bachelor)
Additional information: http://moodle.vscht.cz/course/view.php?id=57
Guarantor: Mareš Jan doc. Ing. Ph.D.
Interchangeability : N445061
Examination dates   Schedule   
Annotation - Czech
Last update: Mareš Jan doc. Ing. Ph.D. (14.06.2018)
Cílem je poskytnout přehled klasických i moderních optimalizačních metod a aplikovat je na řešení praktických inženýrských problémů. Studenti se naučí formulovat optimalizační problémy, stanovit požadavky a omezení kladená na řešení, převést optimalizační problém do korektní matematické formy, použít odpovídající numerické algoritmy ve vhodném výpočetním prostředí (Matlab: Symbolic Math Toolbox, Optimization Toolbox a Microsoft Excel: Solver) a ověřit a kriticky vyhodnotit získané řešení.
Aim of the course -
Last update: Pátková Vlasta (20.04.2018)

Students will be able to:

  • formulate optimization problems
  • solve basic and advanced optimization tasks in different computing environments
  • use various optimization programs and tools
Literature -
Last update: Pátková Vlasta (20.04.2018)

R: Venkataraman P.: Applied Optimization with MATLAB Programming. Wiley, New York 2002, 0-471-34958-5

R: Himmelblau, D. M.: Applied Nonlinear Programming. McGraw-Hill, New York 1972, 0-07-028921-2

A: Rao, S. S.: Engineering Optimization. Theory and Practice. Wiley, New York 1996, 0-471-55034-5

A: Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, 1989, 0-201-15767-5

Learning resources -
Last update: Pátková Vlasta (20.04.2018)

http://moodle.vscht.cz/course/view.php?id=57

http://www.mathworks.com/products/optimization/

http://www.mathworks.com/products/global-optimization/

http://www.mathworks.com/matlabcentral/fileexchange/index?term=tag%3A%22optimization%22

Syllabus -
Last update: Pátková Vlasta (20.04.2018)

1. Optimization process, concepts and goals, general scheme and basic elements

2. Classical analytical theory of extremes, non-classical applications

3. Linear programming

4. Simplex method

5. Quadratic programming

6. Non-linear programming, one-dimensional and multidimensional seeking

7. Gradient and non-gradient methods

8. Optimization methods with equality and inequality constraints, multiple criteria decision making.

9. Optimization of multistage processes, dynamical programming, maximum principle

10. Variation calculus

11. Combinatorial optimization, graph optimization methods

12. Discrete optimization, branch and bound method

13. Stochastic optimization, simulated annealing method

14. Genetic algorithm, evolution algorithm, taboo search algorithms

Registration requirements -
Last update: Pátková Vlasta (20.04.2018)

Algorithms and Programming, Mathematics I

Course completion requirements - Czech
Last update: Mareš Jan doc. Ing. Ph.D. (26.04.2018)

Vypracování a obhajoba tří samostatných projektů: 0 - 25 bodů

Ústní zkouška: 0-75 bodů

Celkové bodové hodnocení: 100-90 A, 89-80 B, 79-70 C, 69-60 D, 59-50 E, méně než 50 F.

Teaching methods
Activity Credits Hours
Účast na přednáškách 1 28
Práce na individuálním projektu 2 56
Příprava na zkoušku a její absolvování 1 28
Účast na seminářích 1 28
5 / 5 140 / 140
Coursework assessment
Form Significance
Regular attendance 20
Report from individual projects 40
Examination test 20
Oral examination 20

 
VŠCHT Praha