|
|
|
||
The lectures are oriented to application of mathematical statistics in pattern recognition. Basic terms, their relationships to statistics, programming techniques, and descriptor design are poined out together with research, real data processing, and applications.
Last update: Pátková Vlasta (20.04.2018)
|
|
||
Students will be able to: Design descriptors for statistical pattern recognition Apply data transforms for improvement of pattern recognition quality Apply standard pattern recognition methods Evaluate quality of pattern recognition systém Last update: Pátková Vlasta (20.04.2018)
|
|
||
Vypracování a obhajoba tří samostatných programů: 0 - 25 bodů
Ústní zkouška: 0-75 bodů
Celkové bodové hodnocení: 100-90 A, 89-80 B, 79-70 C, 69-60 D, 59-50 E, méně než 50 F. Last update: Mareš Jan (26.04.2018)
|
|
||
R:Fukunaga K., Introduction to Statistical Pattern Recognition, Academic Press, London, 1990 R:Shawe-Taylor J., Cristianini N., Kernel Methods for Pattern Analysis, Cambridge University Press, Cambridge, 2009 A:Scholkopf B., Smola A.J., Learning with Kernels, MIT Press, Cambridge, 2002 Last update: Pátková Vlasta (20.04.2018)
|
|
||
1. Class, pattern, descriptors, pattern set for statistical pattern recognition 2. Repetitorium of basic statistical terms and principles 3. Quality of desroptor set: the best descriptor, acceptable subset of descriptors 4. Linear discrimination analysis as a tool for pattern recognition 5. Evaluation of pattern recognition quality: p-value, sensitivity, specificity, error, AIC, BIC 6. Cross-validation methodology in evaluation of recognition quality 7. Linear data transforms: normaliztion, standardization, PCA, spherization 8. Robust and regularized methods and their advantages in pattern recognition 9. Application of metrics in pattern recognition: Euclidean, Minkowski, Mahalanobis, k-NN, c-mean 10. Application of PDF in pattern recognition: GMM, Parzen and LQ estimates 11. Linear, non-linear, and logistic regression as pattern recognition tools 12. Feature space reduction as application of binary optimization 13. Kernel functions in design of non-linear classifiers 14. Fuzzy sets in pattern recognition: fuzzification, FCM Last update: Pátková Vlasta (20.04.2018)
|
|
||
interal training materials Last update: Pátková Vlasta (20.04.2018)
|
|
||
Basic knowledge of mathematical statistics and programming in MATLAB. Last update: Pátková Vlasta (20.04.2018)
|
|
||
none Last update: Pátková Vlasta (20.04.2018)
|
Teaching methods | ||||
Activity | Credits | Hours | ||
Konzultace s vyučujícími | 0.5 | 14 | ||
Účast na přednáškách | 1 | 28 | ||
Práce na individuálním projektu | 2 | 56 | ||
Příprava na zkoušku a její absolvování | 0.5 | 14 | ||
Účast na seminářích | 1 | 28 | ||
5 / 5 | 140 / 140 |