Data Mining Algorithms - M500002
Title: Algoritmy data miningu
Guaranteed by: Department of Informatics and Chemistry (143)
Faculty: Faculty of Chemical Technology
Actual: from 2022
Semester: summer
Points: summer s.:4
E-Credits: summer s.:4
Examination process: summer s.:
Hours per week, examination: summer s.:2/1, C+Ex [HT]
Capacity: unknown / unknown (unknown)
Min. number of students: unlimited
State of the course: taught
Language: Czech
Teaching methods: full-time
Teaching methods: full-time
Level:  
Guarantor: Holeňa Martin doc. Ing. RNDr.
Interchangeability : N500012
Examination dates   
Annotation -
In this course, we discuss most popular data mining algoritms and optimization techniques such as decision trees, support vector machines, multilayered perceptrons etc. We also explain theoreticaly basic elements of statistical learning that are essential for all data engineers.
Last update: Hladíková Jana (05.01.2018)
Aim of the course -

Students will be able to:

use theoretical background that is needed for skillful application of data mining algoritms in the field of classification, regression and clustering

Last update: Hladíková Jana (05.01.2018)
Course completion requirements - Czech

Pro zı́skánı́ zápočtu je potřeba dostatek bodů ze semestrálnı́ práce. Zkouška se skládá z pı́semné přı́pravy a povinné ústnı́ části.

Last update: Svozil Daniel (07.02.2018)
Literature -

R:Berka P. Dobývání znalostí z databází. Praha: Academia, 2003. ISBN 80-200-1062-9

R:Hastie T.,Tibshirani R.,Friedman J., The Elements of Statistical Learning, Data Mining, Inference and Prediction, Springer, 2016, ISBN: 978-0387848570

Last update: Svozil Daniel (04.11.2018)
Syllabus -

1. Introduction to data mining, classification, prediction, K-NN algorithm and variants

2. Model, evaluation, plasticity regularization

3. Classification and Regression from statistical point of view

4. Decision Trees (C4.5, CART, MARS algorithms)

5. Classification by means of perceptrons and its generalization

6. Linear, polynomial and logistic regression, LMS, MLE algorithms

7. Nonlinear SVM-classifiers and the SV-regression

8. Inductive modelling - GMDH MIA, COMBI

9. Nonlinear regression by multilayered perceptrons

10. Ensemble models (Adaboost algorithm)

11. Statistical approach to neural networks

12. Cluster analysis (K-means, agglomerative clustering, neural gas, SOM)

13. A statistical approach to number of hidden neurons selection

Last update: Hladíková Jana (05.01.2018)
Learning resources -

https://edux.fit.cvut.cz/courses/MI-ADM

(login necessary)

Last update: Hladíková Jana (05.01.2018)
Registration requirements -

Statostocal data analysis, Data mining, Programming and algorithms

Last update: Svozil Daniel (08.02.2018)
Teaching methods
Activity Credits Hours
Účast na přednáškách 1 28
Práce na individuálním projektu 2 56
Účast na seminářích 0.5 14
4 / 4 98 / 112