SubjectsSubjects(version: 955)
Course, academic year 2019/2020
Mechanics of Materials - N107003
Title: Mechanika materiálů
Guaranteed by: Department of Glass and Ceramics (107)
Faculty: Faculty of Chemical Technology
Actual: from 2019 to 2020
Semester: winter
Points: winter s.:4
E-Credits: winter s.:4
Examination process: winter s.:
Hours per week, examination: winter s.:2/1, C+Ex [HT]
Capacity: unknown / unknown (unknown)
Min. number of students: unlimited
State of the course: taught
Language: Czech
Teaching methods: full-time
Teaching methods: full-time
Is provided by: M107001
Guarantor: Pabst Willi prof. Dr. Dipl.-Min.
Interchangeability : S107003
Is interchangeable with: S107003, M107001
Examination dates   Schedule   
Annotation -
This course provides a self-contained and consistent overview of the mechanical and thermomechanical properties of materials, based on the theory of rational mechanics and thermomechanics. The presentation of the topics is based on the exact theory of continua and requires from the student the ability to follow tensor formalism. Apart from standard topics this course contains recent developments in the field of materials mechanics, and tries to correct some of the errors and misconceptions in the common textbook literature. The course is appropriate for students of all subjects.
Last update: VED107 (27.11.2013)
Aim of the course -

Students will be able to:

use the most important concepts related to stress and strain tensors, correctly choose and and evaluate mechanical tests, correctly interpret their results, use the correct terminology for the presentation of results and grasp the underlying theoretical principles of materials mechanics to the degree and depth necessary for a full understanding of the modern specialized literature in the field.

Last update: Pabst Willi (01.08.2013)
Literature -

R - Haupt P.: Continuum Mechanics and Theory of Materials. Springer, Berlin 2000. (ISBN 3-540-66114-X).

R - Billington E. W., Tate A.: The Physics of Deformation and Flow. McGraw Hill, New York 1981. (ISBN 0-07-005285-9).

R - Green D.J.: An Introduction to the Mechanical Properties of Ceramics. Cambridge University Press , Cambridge 1998. (ISBN 0-521-59913-X).

R - Menčík J.: Pevnost a lom skla a keramiky. SNTL, Praha 1990. (ISBN 80-03-00205-2).

R - Pabst W., Gregorová E.: Effective elastic moduli of alumina, zirconia and alumina-zirconia composite ceramics, pp. 31-100 in Caruta B.M. (ed.): Ceramics and Composite Materials � New Research. Nova Science, New York 2006. (ISBN 1-59454-370-4).

A - Torquato S.: Random Heterogeneous Materials - Microstructure and Macrosopic Properties. Springer, New York 2002.

A - Menčík J.: Strength and Fracture of Glass and Ceramics. Elsevier, Amsterdam 1992. (ISBN 0-444-98685-5).

A - Pabst W., Gregorová E.: Effective thermal and thermoelastic properties of alumina, zirconia and alumina-zirconia composite ceramics, pp. 77-138 in Caruta B.M. (ed.): New Developments in Materials Science Research. Nova Science, New York 2007. (ISBN 1-59454-854-4).

Last update: Pabst Willi (01.08.2013)
Learning resources -

Lecture notes on CD (available from the lecturer).

Last update: Pabst Willi (01.08.2013)
Syllabus -

1. Introduction: balance equations of mechanics and thermomechanics, tensors, principal values, invariants, Cayley-Hamilton theorem

2. Constitutive theory: constitutive principles, deformation function, deformation gradient, deformation and strain tensors, stress tensors

3. Linear elasticity of anisotropic solids, nonlinear elasticity of isotropic solids, viscosity of non-Newtonian fluids

4. Linear elasticity of isotropic solids (uniaxial tension, simple shear, isotropic deformation), definition of elastic constants, auxetic materials

5. Linear thermoelasticity of solids and fluids (stress, heat flux, energy, entropy), isothermal and adiabatic elastic constants

6. Equations of state, principles of atomistic modeling of elastic and thermoelastic properties; property values for metals, ceramics, glasses and polymers

7. Effective elastic, thermoelastic and thermophysical properties of dense polycrystalline materials; measurement of elastic, thermoelastic and thermophysical properties

8. Temperature dependence of elastic, thermoelastic and thermophysical properties; high-temperature behavior of materials

9. Basic fracture mechanics: plane elasticity, stress intensity factor, fracture criteria, plastic zone, fatigue, lifetime; elastoplastic behavior

10. Testing of mechanical properties: strength, Weibull statistics, hardness, fracture toughness; temperature and grain size dependence of properties

11. Rheology: Viscous, viscoplastic and viscoelastic material behavior, damping

12. Effective properties of heterogeneous materials I: Rigorous micromechanical bounds

13. Effective properties of heterogeneous materials II: Model relations for composites

14. Effective properties of heterogeneous materials III: Model relations for porous materials

Last update: Pabst Willi (07.12.2017)
Registration requirements -

Mathematics I, Mathematics II

Last update: Pabst Willi (01.08.2013)
Teaching methods
Activity Credits Hours
Účast na přednáškách 1 28
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi 1 28
Příprava na zkoušku a její absolvování 1.5 42
Účast na seminářích 0.5 14
4 / 4 112 / 112
Coursework assessment
Form Significance
Regular attendance 40
Examination test 60