Hybrid materials - N108024
Title: Hybridní materiály
Guaranteed by: Department of Solid State Chemistry (108)
Faculty: Faculty of Chemical Technology
Actual: from 2012 to 2019
Semester: winter
Points: winter s.:3
E-Credits: winter s.:3
Examination process: winter s.:
Hours per week, examination: winter s.:2/0, Ex [HT]
Capacity: unlimited / unknown (unknown)
Min. number of students: unlimited
Language: Czech
Teaching methods: full-time
For type:  
Guarantor: Kovanda František prof. Ing. CSc.
Is interchangeable with: M108011
Examination dates   Schedule   
Annotation -
Last update: TAJ108 (28.11.2013)
Organic-inorganic hybrid and nanocomposite materials represent a novel and rapidly expanding field of materials research and development. Combination of components on nanoscale can offer unique properties of the resulting material. The course gives information about the methods used in synthesis and characterization of these materials, their properties and applications.
Aim of the course -
Last update: TAJ108 (30.08.2013)

Students will be able to:

suggest methods suitable for preparation of organic-inorganic hybrid materials and nanocomposites;

suggest suitable combinations of building components for obtaining materials with desired properties;

choose suitable materials for given applications.

Literature -
Last update: TAJ108 (30.08.2013)

R: Kickelblick G. (Editor): Hybrid Materials. Synthesis, Characterization, and Applications. Wiley-VCH 2007. ISBN 978-3-527-31299-3

Learning resources -
Last update: TAJ108 (06.09.2013)

Electronic version of study materials

Syllabus -
Last update: TAJ108 (30.08.2013)

1. Hybrid and nanocomposite materials, interaction of organic and inorganic components, properties and applications.

2. Synthesis of hybrid materials, sol-gel method.

3. Synthesis of (nano)particles of organic and inorganic components.

4. Self-assembly techniques in preparation of hybrid materials.

5. Layered host structures, intercalation, preparation of oriented films.

6. Characterization of hybrid materials.

7. Polymer nanocomposites and their applications.

8. Polymer nanocomposites containing lamellar inorganic nanoparticles (modified clay minerals, etc.).

9. Incorporation of organic components into micro- and mesoporous hosts, porous hybrid materials, metal-organic frameworks.

10. Hybrid materials for optical applications.

11. Electrochemically active hybrid materials and their applications.

12. Natural and synthetic hybrid biomaterials.

13. Hybrid materials for medical applications.

14. Hybrid materials for coatings and surface treatment.

Registration requirements -
Last update: TAJ108 (06.09.2013)

Chemistry and Physics of Solids

Teaching methods
Activity Credits Hours
Konzultace s vyučujícími 0,5 14
Účast na přednáškách 1 28
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi 0,5 14
Příprava na zkoušku a její absolvování 1 28
3 / 3 84 / 84
Coursework assessment
Form Significance
Regular attendance 20
Oral examination 80