Laboratory and industrial data - N111018
Title: Laboratorní a průmyslová data
Guaranteed by: Department of Organic Technology (111)
Faculty: Faculty of Chemical Technology
Actual: from 2021
Semester: winter
Points: winter s.:4
E-Credits: winter s.:4
Examination process: winter s.:
Hours per week, examination: winter s.:1/2, C+Ex [HT]
Capacity: unknown / unknown (unknown)
Min. number of students: unlimited
State of the course: cancelled
Language: Czech
Teaching methods: full-time
Teaching methods: full-time
Level:  
Is provided by: M111006
Guarantor: Bělohlav Zdeněk prof. Ing. CSc.
Škopková Tereza Ing.
Is interchangeable with: M111006
Examination dates   Schedule   
Annotation -
The course focuses on informal, consistent and reliable processing of laboratory and industrial data. Emphasis is placed on the gaining experience of solving a large and varied set of practical examples from the field of chemical technology. The course also introduces the basics of design of experiments.
Last update: Bělohlav Zdeněk (30.08.2013)
Aim of the course -

Students will be able to:

process data from laboratory experiments and industrial measurements,

comprehensively and reliably interpret the results of statistical data processing,

propose optimal design of experiments,

operate representative software for statistical data processing.

Last update: Bělohlav Zdeněk (30.08.2013)
Literature -

A: Joglekar A. M.: Industrial statistics. Wiley, Hoboken 2010. 9780470497166

Last update: Bělohlav Zdeněk (03.02.2015)
Requirements to the exam - Czech

1. Podmínkou udělení zápočtu je zvládnutí základních metod zpracování a vyhodnocování dat, prověřené v pravidelných testech během semestru

2. Zkouška je založena na samostatném vypracování souboru praktických úloh s možností využití libovolných pomůcek a studijních opor

Last update: Bělohlav Zdeněk (21.08.2018)
Syllabus -

1. Principles of data analysis, properties of the measured data, experiments versus observations.

2. Statistical analysis of the data, sample problems, application software.

3. Direct acquisition of information from measured data, analysis of the sample characteristics.

4. Time series analysis, data sorting, design of experiments.

5. Mathematical models, mechanistic, empirical and semi-empirical models.

6. Methods of optimal estimation of model parameters, software for regression analysis.

7. Models with differential equations, derivatives of dependent variables, integration of differential equations.

8. Evaluating the reliability of regression parameters, confidence intervals, correlation of parameters.

9. Evaluating the reliability of simulated data, analysis of variance and residual variation.

10. Treatment of data for regression analysis, elimination of remote measurements, transformation of variables.

11. Treatment of regression models, model transformation, elimination of strong correlation of parameters.

12. Design of experiments, the optimum number of responses and the range of experimental conditions.

13. Sequential design of experiments, model discrimination and refinement.

14. Factorial and empirical design of experiments, full and fractional factorial design.

Last update: Bělohlav Zdeněk (30.08.2013)
Learning resources -

http://www.vscht.cz/kot/cz/studijni-materialy.html

Last update: Bělohlav Zdeněk (30.08.2013)
Registration requirements -

Mathematics I, Applied Statistics

Last update: Bělohlav Zdeněk (30.08.2013)
Teaching methods
Activity Credits Hours
Konzultace s vyučujícími 0.5 14
Účast na přednáškách 0.5 14
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi 1 28
Příprava na zkoušku a její absolvování 1 28
Účast na seminářích 1 28
4 / 4 112 / 112
Coursework assessment
Form Significance
Regular attendance 30
Examination test 30
Oral examination 40