|
|
|
||
The subject of Physics (B) builds on the subject of Physics (A) and is devoted to selected topics from electromagnetic field theory, quantum mechanics, solid state physics, nuclear physics and elementary particle physics. Content of subject is modified with respect to the needs of downstream courses of the Bachelor's study program.
Last update: Hofmann Jaroslav (11.07.2013)
|
|
||
Students will be able to: Explain the essence of selected physical phenomena in the area of electromagnetic fields, quantum mechanics, solid state physics, nuclear physics and elementary particle physics Apply physical laws in the study of related objects Separately deal with physical tasks, which are the basis for a follow-up study To use computer technology with a suitable software (for example. MAPLE) to deal with the more complex physical tasks Last update: TAJ444 (16.12.2013)
|
|
||
R: Richard W.Robinet: Quantum Mechanics. Oxford University Press, 2006. ISBN 0-19-853097-8 R: John D.Cutnell, Kenneth W. Johnson: Physics. John Wiley&Sons, Inc., 1998. ISBN 0-471-15519-5 A: Frank J.Blatt: Modern Physics. McGRAW-HILL,INC. 1992. ISBN 0-07-005877-6 Last update: Hofmann Jaroslav (11.07.2013)
|
|
||
http://ufmt.vscht.cz/cs/elektronicke-pomucky.html (in Czech) Last update: Hofmann Jaroslav (11.07.2013)
|
|
||
Výuka formou přednášek a výpočetních seminářů Last update: Hofmann Jaroslav (08.11.2012)
|
|
||
1.Inertial and non-inertial frames of reference, relativistic dynamics, the principle of equivalence. 2.Electromagnetic field: Gauss’ law, induced electric fields, induced magnetic fields, dielectrics, magnetic materials, Maxwell equations. 3.Electromagnetic waves: traveling, intensity, energy transport, polarization, optical activity. 4.Photons and the wave nature of particles: Blackbody radiation, photoelectric effect, X rays, Compton effect, particle-wave duality, de Broglie wavelength, the uncertainty principle. 5.Roots of the quantum theory: Schrödinger equation ,interpretation of the wave function, probability density, operators. 6.Solution of the Schrödinger equation I: Particle in infinite potential barriers, energy level diagram. 7.Solutions of the Schrödinger equation II: Harmonic oscillator, tunneling. 8.The hydrogen atom I: Bohr´s theory, energy level diagram, series of spectral lines. 9.The hydrogen atom II: Quantum solution, hydrogen atom wave functions, energy eigenvalues, radial probability density, quantum numbers. 10.Atom in magnetic field: The Zeeman effect, electron spin, splitting of the spectral line. 11.Many - electron atoms: central field approximation, Pauli exclusion principle, electronic configuration, Hund rules. 12.Fundamentals of solid state physics I:Band model, Fermi energy, intrinsic and doped semiconductor, PN transition. 13.Fundamentals of solid state physics II: Contact phenomenon, Seebeck´s effect, Peltier´s effect, piezoelectricity, photo diodes. 14.Fundamentals of nuclear physics: properties of nuclei, radioactivity, nuclear reactions. Elementary particles: fermions and bosons, quarks and leptons, forces. Last update: Hofmann Jaroslav (11.07.2013)
|
|
||
Mathematics A Mathematics B Physics A Last update: Hofmann Jaroslav (11.07.2013)
|
Teaching methods | ||||
Activity | Credits | Hours | ||
Konzultace s vyučujícími | 0.5 | 14 | ||
Účast na přednáškách | 1 | 28 | ||
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi | 1 | 28 | ||
Příprava na zkoušku a její absolvování | 2.5 | 70 | ||
Účast na seminářích | 1 | 28 | ||
6 / 6 | 168 / 168 |
Coursework assessment | |
Form | Significance |
Examination test | 40 |
Continuous assessment of study performance and course -credit tests | 20 |
Oral examination | 40 |