SubjectsSubjects(version: 954)
Course, academic year 2023/2024
Physical chemistry of inorganic systems - P101005
Title: Fyzikální chemie anorganických soustav
Guaranteed by: Department of Inorganic Chemistry (101)
Faculty: Faculty of Chemical Technology
Actual: from 2020
Semester: both
Points: 0
E-Credits: 0
Examination process:
Hours per week, examination: 3/0, other [HT]
Capacity: winter:unknown / unknown (unknown)
summer:unknown / unknown (unknown)
Min. number of students: unlimited
State of the course: taught
Language: Czech
Teaching methods: full-time
Teaching methods: full-time
Note: course is intended for doctoral students only
can be fulfilled in the future
you can enroll for the course in winter and in summer semester
Guarantor: Sedmidubský David prof. Dr. Ing.
Is interchangeable with: AP101005
Annotation -
The course is focused on the extension of knowledge and skills acquired in the master subject Theoretical principles of inorganic chemistry and/ or similar courses. The objective is to get acquainted with advanced methods of studying inorganic substances such as electronic structure calculations of molecules, complexes and solids, their energies, vibration spectra, chemical and phase equilibria. Programs like Gaussian, Orca, Wien2k, Medea - VASP and FactSage will be used for solution of practical problems and projects.
Last update: Sedmidubský David (15.11.2018)
Aim of the course -

Students will be able to:

Actively apply ligand field theory and molecular orbital theory in the study of electronic properties of inorganic substances

Apply group theory to derive the normal vibrational modes of molecules and to calculate their frequencies

Derive thermodynamic functions from ground and excited states

Propose thermodynamic models of solution phases

Calculate phase and chemical equilibria and construct phase diagrams of inorganic systems

Last update: Sedmidubský David (15.11.2018)
Literature -

P. Atkins, J. de Paula, Physical chemistry, 9th Edition, Oxford University Press, 2010 (R)

T.A. Albright, J.K. Burdett Myung‐Hwan Whangbo, Orbital Interactions in Chemistry, 2nd Edition, J.Wiley & Sons, 2013 (R)

F. Weinhold, Chemical and Phase Thermodynamics – Classical and Geometrical Theory, J. Wiley & Sons, 2009.(A)

H.A.J. Oonk, M.T. Calvet, Equilibrium between Phases of Matter, Springer, 2008. (R)

Last update: Sedmidubský David (16.11.2018)
Learning resources - Czech

Last update: Sedmidubský David (03.07.2018)
Syllabus -
  • Electron structure of atoms and ions - quantum-mechanical description
  • Ligand field theory - multipole expansion of potential, terms and multiplets energies in ligand field

  • Electron structure of molecules - quantum-mechanical description
  • Rotational and vibraitonal spectra of molecules and crystals

  • Total energy and statistical mechanics
  • Speciation of inorganic systems, mass balance equations, identification of independent reactions
  • Thermodynamic description of solution phases
  • Homogeneous equilibrium in gases and aqueous solutions

  • Phase transitions and heterogeneous equilibria
  • Thermodynamic modeling, phase diagrams
Last update: Sedmidubský David (15.11.2018)
Registration requirements - Czech

Obecná a anorganická chemie II, Fyzikální chemie I, Teoretické principy anorganické chemie,

Last update: Sedmidubský David (03.07.2018)
Course completion requirements - Czech

Úspěšné zpracování projektu, jehož téma bude voleno s ohledem na téma dizertační práce

Last update: Sedmidubský David (03.07.2018)