Down-stream Processing in Biotechnology - P319004
Title: Down-stream processing v biotechnologii
Guaranteed by: Department of Biotechnology (319)
Faculty: Faculty of Food and Biochemical Technology
Actual: from 2023
Semester: both
Points: 0
E-Credits: 0
Examination process:
Hours per week, examination: 3/0, other [HT]
Capacity: winter:unknown / unknown (unknown)
summer:unknown / unknown (unknown)
Min. number of students: unlimited
State of the course: taught
Language: Czech
Teaching methods: full-time
Teaching methods: full-time
Note: course is intended for doctoral students only
can be fulfilled in the future
you can enroll for the course in winter and in summer semester
Guarantor: Melzoch Karel prof. Ing. CSc.
Is interchangeable with: AP319004
Examination dates   
Annotation -
Separation processes are an integral part of any industrial biotechnology. Each biotechnological process requires operations that involve separation, concentration, or purification of substances, both raw materials (upstream processes) and products (downstream operations). Students will get acquainted with principles of selected separation processes in biotechnology, their mass and enthalpy balance, process kinetics, instrumentation and equipment used in laboratory scale and industrial practice, including the possibilities of control and modeling of unit operations. It is shown what role strategies and economics play in choosing separation processes and overall purification sequence. Examples of biotechnology from practice are used for demonstration of the realization of separation processes, including the use of integrated processes - the connection of bioprocess with "downstream" techniques.
Last update: Kubová Petra (14.11.2018)
Aim of the course -

Students will expand thier knowledge of industrial biotechnology and bioengineering regarding separation processes. In particular, they will acquire skills in the field of upstream and downstream processing of biotechnological production, development, design and optimization of biotechnological processes, including the design of an efficient sequence of separation processes from the point of view of economic indicators, functionality and safety with respect to good manufacturing practice.

Last update: Kubová Petra (14.11.2018)
Literature -

Harrison R. G., Todd P., Rudge S. R., Petrides D. P. (2003): Bioseparations Science and Engineering. Oxford University Press, New York,Oxford. ISBN: 0-19-512340-9

Wang W. K. (2001): Membrane Separations in Biotechnology. 2. vyd., Marcel Dekker, Inc., New York, Basel. ISBN: 0-8247-0248-4

Fellows P. J. (2009): Food Processing Technology, Principles and Practice. 3. vyd., Woodhead Publishing Ltd, Cambridge a CRC Press, Boca Raton. ISBN: 978-1-84569-216-2

And series of electronical publications which are available at the web page:

Last update: Kubová Petra (14.11.2018)
Teaching methods -

Introductory lectures and subsequent seminars, individual processing of selected topics and their presentation.

Last update: Kubová Petra (14.11.2018)
Requirements to the exam -


Last update: Kubová Petra (14.11.2018)
Syllabus -
  • Biotechnological production as a sequence of operations - from substrate to product. Selection of the separation process.
  • Membrane processes - microfiltration, ultrafiltration, nanofiltration, reverse osmosis
  • Membrane distillation, pervaporation, gas and vapor permeation, pertraction
  • Electromigration processes, electrophoretic methods, electrodialysis, membrane electrolysis
  • Supercritical fluid extraction, aqueous two-phase systems, biopolymer extraction,
  • Preparative chromatography - adsorption chromatography, molecular sieve chromatography, ion exchange chromatography, hydrophobic interaction chromatography, reverse phase chromatography, affinity chromatography - biospecific interactions
  • Bioprocess integration with up- and down-stream techniques. Membrane bioreactors - Industrial applications.
  • Strategy and economics in choosing the separation technique and the purification sequence
  • Fundamentals of modeling of separation processes

Last update: Kubová Petra (14.11.2018)
Entry requirements -

Life science or technical education

Last update: Kubová Petra (14.11.2018)
Registration requirements -


Last update: Kubová Petra (14.11.2018)
Course completion requirements -

Defense of an individual project on the selected topic. Oral exam

Last update: Kubová Petra (14.11.2018)