SubjectsSubjects(version: 956)
Course, academic year 2023/2024

The web interface of the Educational Info System will be unavailable from 1 August to 2 August due to planned maintenance.


Thank you for your understanding and we apologize for any inconvenience.

High Resolution Spectroscopy - P402016
Title: Vysocerozlišená spektroskopie
Guaranteed by: Department of Analytical Chemistry (402)
Faculty: Faculty of Chemical Engineering
Actual: from 2020
Semester: winter
Points: winter s.:0
E-Credits: winter s.:0
Examination process: winter s.:
Hours per week, examination: winter s.:2/1, other [HT]
Capacity: unknown / unknown (unknown)
Min. number of students: unlimited
State of the course: taught
Language: Czech
Teaching methods: full-time
Teaching methods: full-time
Note: course is intended for doctoral students only
can be fulfilled in the future
Guarantor: Urban Štěpán prof. RNDr. CSc.
Kania Patrik Ing. Ph.D.
Koucký Jan Ing. Ph.D.
Is interchangeable with: AP402016
Annotation -
The course focuses on advanced methods of infrared, THz and MW spectroscopies, which will be taught with a common theoretical background. At the same time, advanced experimental methods will be discussed to distinguish high-resolution spectroscopy from other spectroscopies. Simultaneously with the theoretical interpretation, practical demonstrations in specialized laboratories of the Institute of Chemical Technology and of the Academy of Sciences of the Czech Republic will take place.
Last update: Záruba Kamil (14.09.2018)
Literature -

A: W. Gordy, R.L. Cook, Microwave Molecular Spectra, John Wiley and Sons, New York, 1976

A: H. Kroto, Molecular Rotation Spectra, John Wiley and Sons, New York, 1992

A: M. Hollas, High Resolution Spectroscopy (2nd Ed.), John Wiley and Sons, Chichester, 1998

Last update: Záruba Kamil (17.10.2018)
Syllabus -

1) Introduction, basic concepts, spectroscopy types according to the quantum mechanical model and energy range, quantum states, Einstein theory of spectral transitions.

2) State populations, radiation transition equation and its special cases.

3) Spectral lines width, causes of spectral line width expansion, resolution of lines

4) Molecular Hamiltonian, Born-Oppenheimer approximation, quantum chemistry and electron spectra, rotational and vibrational Hamiltonian. Rotational, rovibrational,a nd rovibronic spectra.

5) Fine and hyperfine structure of quantum states. Quadrupole splitting. Hyperfine magnetic nuclear spin-orbital interactions. Magnetic nuclear spin-spin interactions, spin statistical weights of levels, Pauli's Principle.

6) Rotational spectroscopy, Hamiltonian, special cases, selection rules. Symmetric tops. Practical examples.

7) Asymmetric tops. Hyper-rotary transitions. Determination of molecular geometry. Decimetric spectroscopy. Practical examples.

8) Vibration-rotation Hamiltonian and spectra. Selection rules for rotation-vibration transitions. Hyperfine structure of rotation-vibration transitions.

9) Vibronic spectra.

10) Doppler limited spectroscopy and sub-Doppler spectroscopy. High and ultra-high resolution. Lamb dip and molecular beams.

11) Planck and monochromatic sources of radiation, lasers.

12) Tunable monochromatic sources of radiation, laser diodes, clystrones, carcinotrones, Schottky diodes. Duplication and other multiplication of photon energy.

13-14) Application of high resolution spectroscopy.

Last update: Záruba Kamil (14.09.2018)
Registration requirements -

Subject that should be preceded by:

Molecular Spectroscopy and / or Molecular Physical Chemistry and Symmetry.

Quantum chemistry

and some courses of Physics and Mathematics

Last update: Záruba Kamil (14.09.2018)
Course completion requirements -


Last update: Záruba Kamil (17.10.2018)