SubjectsSubjects(version: 963)
Course, academic year 2024/2025
  
Molecular Modelling and Simulation - P403001
Title: Molekulární modelování a simulace
Guaranteed by: Department of Physical Chemistry (403)
Faculty: Faculty of Chemical Engineering
Actual: from 2024
Semester: summer
Points: summer s.:0
E-Credits: summer s.:0
Examination process: summer s.:
Hours per week, examination: summer s.:2/1, other [HT]
Capacity: unknown / unknown (unknown)
Min. number of students: unlimited
State of the course: taught
Language: Czech
Teaching methods: full-time
Teaching methods: full-time
Level:  
Additional information: http://old.vscht.cz/fch/cz/pomucky/kolafa/N403027.html
Note: course is intended for doctoral students only
can be fulfilled in the future
Guarantor: Kolafa Jiří prof. RNDr. CSc.
Is interchangeable with: AP403001
Annotation -
Basics of modeling of molecules (and other many-particle systems) by means of classical statistical mechanics, from force field construction to molecular dynamics and Monte Carlo simulations. Emphasis is on the methodology of a computer experiment (pseudoexperiment). An individual simulation project of every Ph.D. student is required, either developing a code for a simple system or using a simulation package. Edu-software is available.
Last update: Matějka Pavel (16.06.2019)
Aim of the course -

Students will:

  • Understand the principles of molecular modeling and simulation in the frame classical and quantum thermodynamics
  • Have good overview of MC and MD simulation methods including determination of various quantities
  • Be able to perform a simulation using a suitable package, optionally using own computer code

Last update: Kolafa Jiří (08.08.2018)
Literature -

R: D. Frenkel a B. Smit: Understanding Molecular Simulation (Academic Press, 1996, 2002);

A: M. P. Allen a D. J. Tildesley: Computer Simulation of Liquids (Clarendon Press, Oxford 1986, 2002);

Last update: Řehák Karel (17.10.2018)
Syllabus -

1. Introduction - What are simulations good for?

2. Repetition of statistical thermodynamics and less common ensembles (isobaric).

3. Atomistic and lattice models. Force field.

4. Molecular dynamics: Verlet's method, leap-frog. Fundamentals of Hamilton's mechanics, conservation laws. Symplecticity.

5. Other integrators (Gear, multiple timestep). Thermostats in MD.

6. Monte Carlo Methods - MC integration, Metropolis method. Random numbers.

7. Methodology of simulations and measurement of quantities, statistical errors. Boundary conditions.

8. Structural quantities: radial distribution functions, structure factor.

9. Entropic quantities: thermodynamic integration, non-Boltzmann sampling, integration of mean force, Widom's method.

10. Potential range, cutoff corrections. Coulomb's forces: Ewald summation, reaction field.

11. Other ensembles: isobaric, grandkanonical, Gibbs. Additional degrees of freedom in MD: Nose-Hoover, barostat.

12. Other MC methods: preferential sampling, molecules, polymers. Constraint dynamics (SHAKE). Optimization of simulations.

13. Brownian (Langevin) dynamics and DPD. Kinetic quantities: EMD vs. NEMD.

14. Optimization: simulated annealing, genetic algorithms.

Last update: Řehák Karel (05.11.2018)
Learning resources -

http://old.vscht.cz/fch/en/tools/kolafa/S403027.html

Last update: Kubová Petra (12.04.2018)
Entry requirements -

Good knowledge of chemical and statistical thermodynamics. Basic knowledge of theoretical mechanics is recommended.

Last update: Kolafa Jiří (08.08.2018)
 
VŠCHT Praha