Advanced Quantum Mechanics for chemical physics and sensorics - P403021
Title: Pokročilá kvantová mechanika pro chemickou fyziku a senzoriku
Guaranteed by: Department of Physical Chemistry (403)
Faculty: Faculty of Chemical Engineering
Actual: from 2020
Semester: both
Points: 0
E-Credits: 0
Examination process:
Hours per week, examination: 2/1, other [HT]
Capacity: winter:unlimited / unlimited (unknown)
summer:unknown / unknown (unknown)
Min. number of students: unlimited
State of the course: taught
Language: Czech
Teaching methods: full-time
Teaching methods: full-time
Level:  
Note: course is intended for doctoral students only
can be fulfilled in the future
you can enroll for the course in winter and in summer semester
Guarantor: Slavíček Petr prof. RNDr. Bc. Ph.D.
Kolafa Jiří prof. RNDr. CSc.
Kolář Michal doc. RNDr. Ph.D.
Is interchangeable with: AP403021
Examination dates   
Annotation -
The course dedicated to Ph.D. students covers more advanced parts of quantum theory which are typically not treated in details within usual chemical curriculum.
Last update: Matějka Pavel (16.06.2019)
Aim of the course -

The student will be able to:

understand formalism of quantum theory

actively follow primary literature in theoretical chemistry

analyze molecular experiments in time and energy domains

Last update: Matějka Pavel (13.11.2018)
Course completion requirements -

The course ends with an oral exam.Individual project focusing on a certain sub=project is part of the course.

Last update: Slavíček Petr (13.11.2018)
Literature -

Z: E. Bittner: Quantum dynamics: applications in biological and materials systems. CRC press, 2009, 1420080539.

Z: P. W. Atkins, R. R. Friedman: Molecular Quantum Mechanics, Oxford University Press, Oxford 2010, 0199541426.

Last update: Slavíček Petr (13.11.2018)
Teaching methods - Czech

Přednášky a cvičení.

Last update: Slavíček Petr (13.11.2018)
Syllabus -

1. Experimental foundations of quantum mechanics.

2. Postulates of quantum mechanics I: Probability amplitude, superposition principle.

3. Postulates of quantum mechanics II: Mean value, measurables, operators.

4. Postulates of quantum mechanics III: Time evolution.

5. Operator methods in quantum mechanics I: harmonic oscillator, annihilation and creation operator.

6. Operator methods in quantum mechanics I: angular momentum, ladder operators.

7. Perturbation theory: Derivation and applications.

8. Perturbation theory: van der Waals interaction in various perspectives.

9. Time-dependent perturbation theory: constant and harmonic perturbation. Rabi oscillations.

10. Vibrational, rotational, atomic and molecular spectra. Selection rules. Franck-Condon principle.

11. Excitation transfer. Multi-photon processes and perturbation theory of higher orders.

12. Interaction of light and molecules. Spectral lineshapes. Einstein coefficients.

13. Time-dependent approach to spectroscopy. Autocorrelation function.

14. Elements of scattering theory. Green functions.

Last update: Slavíček Petr (13.11.2018)
Learning resources -

http://www.vscht.cz/fch/cz/vyuka/N403007.html

Last update: Slavíček Petr (13.11.2018)
Registration requirements

Mathematics I, Physics I

Last update: Slavíček Petr (13.11.2018)