Quantum Computers and Algorithms - P403023
Title: Kvantové počítače a algoritmy
Guaranteed by: Department of Physical Chemistry (403)
Faculty: Faculty of Chemical Engineering
Actual: from 2024
Semester: both
Points: 0
E-Credits: 0
Examination process:
Hours per week, examination: 2/1, other [HT]
Capacity: winter:unknown / unknown (unknown)
summer:unknown / unknown (unknown)
Min. number of students: unlimited
State of the course: taught
Language: Czech
Teaching methods: full-time
Teaching methods: full-time
Level:  
Note: course is intended for doctoral students only
can be fulfilled in the future
you can enroll for the course in winter and in summer semester
Guarantor: Pittner Jiří doc. Mgr. Dr.rer.nat., DSc.
Classification: Informatics > Programming
Is interchangeable with: AP403023
Examination dates   
Annotation -
This one-semester course is aimed for Ph.D. students interested in quantum computers, quantum algorithms, and quantum information theory, with an accent towards their application to simulations of physical and physicochemical systems (cryptography topics will not be entirely dropped, but will not be in the central focus).
Last update: Matějka Pavel (04.09.2019)
Aim of the course - Czech

Studenti budou znalí

  • principů kvantových počítačů pro řešení fyzikálních a chemických problémů
  • algoritmů používaných pro kvantové počítače

Last update: Matějka Pavel (04.11.2018)
Literature -

M. A. Nielsen, I. L. Chuang: Quantum Computation and Quantum Information, Cambridge University Press, ISBN 0-521-63503-9

J. Gruška: Quantum Computing, McGraw-Hill, ISBN 007-709503-0

Last update: Matějka Pavel (04.11.2018)
Syllabus -

1) Reversible classical computations

2) Computational complexity

3) Quantum bit

4) Measurements in quantum mechanics

5) Entanglement, EPR and Bell inequalities

6) Quantum cryptography and teleportation

7) Quantum gates and circuits

8) Quantum Fourier transform

9) Shor's factoring algorithm

10) Quantum phase estimation algorithm and its iterative version

11) Quantum computations of many-electron systems - part A

12) Quantum computations of many-electron systems - part B

13) Quantum noise and error corrections codes

14) Alternatives of the gate model - adiabatic quantum computers

Last update: Matějka Pavel (04.11.2018)