SubjectsSubjects(version: 955)
Course, academic year 2019/2020
Quantum Chemistry - S403021
Title: Quantum Chemistry
Guaranteed by: Department of Physical Chemistry (403)
Faculty: Faculty of Chemical Engineering
Actual: from 2018 to 2019
Semester: winter
Points: winter s.:4
E-Credits: winter s.:4
Examination process: winter s.:
Hours per week, examination: winter s.:2/1, Ex [HT]
Capacity: unknown / unknown (unknown)
Min. number of students: unlimited
State of the course: taught
Language: English
Teaching methods: full-time
Teaching methods: full-time
Guarantor: Slavíček Petr prof. RNDr. Bc. Ph.D.
Bureš Michal Ing. CSc.
Interchangeability : N403021
Is interchangeable with: N403021
Examination dates   Schedule   
Annotation -
Basic information on the methods of modern quantum chemistry (i.e. quantum theory of atoms and molecules) is provided in this course. The students will learn both the theory and practical applications on problems in the fields of physical chemistry, spectroscopy, inorganic and organics chemistry.
Last update: Kopecká Blanka (03.08.2018)
Aim of the course -

The students will know:

theoretical foundations of quantum theory of atoms and molecules

the work with the basic SW in quantum chemistry

how to formulate and solve problems related to the structure and properties of molecules and molecular systems

Last update: Kopecká Blanka (03.08.2018)
Literature -

R: A. Szabo, S. Ostlund: Modern Quantum Chemistry. Dover Publications, 1996, 0486691861.

R: I. Levine: Quantum chemistry. Prentice Hall, 2009, 0-13-613106-9.

R: P. W. Atkins, R. R. Friedman: Molecular Quantum Mechanics, Oxford University Press, Oxford 2010, 0199541426.

R: M. Bureš: Chemická fyzika, SNTL, Praha, 1986.

A: R. Polák, R. Zahradník: Kvantová chemie, SNTL Praha 1988

A: C. J. Cramer: Essentials of Computational Chemistry. J.Wiley and Sons, 2004, 0470091827.

Last update: Kopecká Blanka (03.08.2018)
Learning resources -

Last update: Kopecká Blanka (03.08.2018)
Syllabus -

1. Principles of quantum mechanics: postulates, principle of superposition, wave function.

2. Bases, operators, eigenvalues..

3. The Hamilton operator, the Schroedinger equation, particle in a box.

4. Linear harmonic oscillator.

5. Operators of orbital momentum.

6. The hydrogen atom, spin.

7. Matrix formulation of the Schroedinger equation and its numerical solving.

8. Systems with many particles, Slater determinant.

9. Energy of molecules, formulation of the Hamiltonian for real molecule.

10. The SCF method, Roothaan equations.

11. Huckel orbitals, Slater orbitals.

12. Ab intio calculations, estimation of the correlation energy.

13. Molecular properties: total energy, orbital energies, molecular geometry.

14. Molecular properties: Population analysis, dipole moment.

Last update: Kopecká Blanka (03.08.2018)
Teaching methods
Activity Credits Hours
Účast na přednáškách 1 28
Práce na individuálním projektu 1.5 42
Příprava na zkoušku a její absolvování 1.5 42
Účast na seminářích 1 28
5 / 4 140 / 112