|
|
|
||
The subject deals with discrete dynamical systems and difference equations which discribe simple mathematical and biological models with very complicated dynamic - chaos. The second part of the subject deals with basic algebraic structures as fields and linear spaces and shows three famous impossibilities as squaring the circle, trisecting an arbitrary angle and doubling the cube.
Last update: VED413 (04.09.2013)
|
|
||
Students learn to solve difference equations and get to know qualitative analysis of nonlinear dynamical systems with chaotic behaviour. In the second part of subjects students get to know modern algebraic structures which are used in the proof of famous imposssibilities. Last update: TAJ413 (17.12.2013)
|
|
||
R: R. Clark Robinson: An Introduction to Dynamical Systems: Continuos and Discrete. Pearson Prentice Hall 2004, ISBN-10: 0-8218-9135-9 ISBN-13: 978-0-8218-9135-3. R: Arthur Jones, Sidney A. Morris, Kenneth R. Pearson: Abstract Algebra and Famous Impossibilities. Springer-Verlag New York, Inc. 1991, ISBN 0-3879-7661-2 R: Mustafa R. S. Kulenovic, Orlando Merino: Discrete dynamical systems and difference equations with Mathematica, CHAPMAN&HALL/CRC,2002, ISBN 1-58488-287-5 Last update: VED413 (04.09.2013)
|
|
||
Lectures and seminars
Last update: VED413 (04.09.2013)
|
|
||
1. The modelling of biological systems using difference equations. The Fibonacci problem. 2. Solution of linear difference equations. Models of growing. A qualitative behavoir of the solution of difference equations. 3. Nonlinear difference equations as discrete dynamical systems. A qualitative analysis. 4. A single species population density. A two-species population, Nicholson-Bailey model. 5. Discrete predator-prey models. 6. Chaos in discrete dynamical systems. 7. Discrete Time-Delay Systems. 8. Straightedge and compass constructions, tree famous problems. 9. Algebraic numbers and their polynomials. 10. Extending fields. 11. Irredicible polynomials. 12. Constructible numbers and fields. 13. Proofs of the impossibilities. 14. Transcendencs of e and Pi. Last update: TAJ413 (09.05.2011)
|
|
||
http://www.vscht.cz/mat/UM/CviceniUM.html Last update: VED413 (04.09.2013)
|
|
||
Mathematics I, Mathematice II Last update: VED413 (04.09.2013)
|
Teaching methods | ||||
Activity | Credits | Hours | ||
Konzultace s vyučujícími | 0.5 | 14 | ||
Účast na přednáškách | 1 | 28 | ||
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi | 1 | 28 | ||
Příprava na zkoušku a její absolvování | 1.5 | 42 | ||
Účast na seminářích | 1 | 28 | ||
5 / 5 | 140 / 140 |
Coursework assessment | |
Form | Significance |
Regular attendance | 10 |
Examination test | 50 |
Continuous assessment of study performance and course -credit tests | 40 |