|
|
|
||
This course will present basic types of functional genetics data such as RT-qPCR data, DNA chips profiling data, and high-throughput sequencing data. Students will acquire information on how to preprocess, clean, and standardize data, and will be acquainted with specific statistical and exploratory data analysis methods used for multidimensional genomic data processing. Students will learn how to interpret data using gene ontologies, how to archive, and how to visualize data. During exercises students will practise gained knowledge on the real life data, and will master commonly used online resources and analytical tools.
Last update: Hladíková Jana (04.01.2018)
|
|
||
During the term students work on various projects. The final exam consists of the presentation of projects and of a written test. Last update: Svozil Daniel (26.01.2018)
|
|
||
R: Zvárová J, Mazura I (eds.), Metody molekulární biologie a bioinformatiky, Karolinum, Praha 2013, ISBN: 978-8024621500 A: Tevfik Dorak, M. (ed.), Real-time PCR (Advanced Methods), Taylor & Francis 2006, ISBN: 978-0415377348 A: Cedric Gondro, Primer to Analysis of Genomic Data Using R, Springer International Publishing 2015, ISBN 978-3-319-14475-7 A: Eija Korpelainen, Jarno Tuimala, Panu Somervuo, Mikael Huss, Garry Wong, RNA-seq Data Analysis: A Practical Approach, Chapman and Hall/CRC 2014, ISBN 9781466595002 Last update: Svozil Daniel (31.10.2018)
|
|
||
Na konci semestru studenti presentují výsledky úkolů a skládají písemnou zkoušku. Last update: Hladíková Jana (04.01.2018)
|
|
||
1. Introduction. Types of functional genetics data. Aims of the anlyses. 2. RT-qPCR data preprocessing: Primer and probe design. Standard curve. 3. RT-qPCR data preprocessing: Amplification curve. Threshold cycle. Background correction. Data normalization. 4. Transcription chips data preprocessing: Noise removal. Data normalization. Relative and absolute quantification. 5. Transcription chips data preprocessing: Variance stabilization. Summarization of intensity values. 6. High-throughput sequencing: Reading and mapping. 7. Further applications: Analysis of single nucleotide polymorphisms and chromosomal abberations. DNA methylation. 8. Expolratory data analysis: Dimensionality reduction. Clustering. Control points. 9. Linear models. Problem of test multiplicity. 10. Classification methods. 11. Design of experiments and randomization. Replication. 12. Annotation and results archivation: Genomic browsers and expression databases. 13. Biological interpretation: Gene Set Enrichment Analysis (GSEA). Database of signalling pathways. Gene ontologies. 14. Integration with interaction data: Network analysis. Database of interaction data. Last update: Hladíková Jana (04.01.2018)
|
|
||
none Last update: Hladíková Jana (04.01.2018)
|
|
||
Students will be able to:
Last update: Hladíková Jana (04.01.2018)
|
|
||
Biochemistry, Molecular genetics Last update: Hladíková Jana (04.01.2018)
|
Teaching methods | ||||
Activity | Credits | Hours | ||
Obhajoba individuálního projektu | 0.5 | 14 | ||
Účast na přednáškách | 1 | 28 | ||
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi | 1 | 28 | ||
Práce na individuálním projektu | 0.5 | 14 | ||
Příprava na zkoušku a její absolvování | 1 | 28 | ||
4 / 4 | 112 / 112 |
Coursework assessment | |
Form | Significance |
Defense of an individual project | 30 |
Examination test | 70 |