|
|
|
||
The course is focused on computer modelling of biological macromolecules (nucleic acids and proteins) and their interactions. With increasing computer power and development of new algorithms, computer modelling now forms an integral part of research in molecular biology, genetics and biochemistry. The first part of the course comprises an introduction to probability theory and stochastic processes, more solid than usually taught in introductory courses. This knowledge is of broader use well outside the domain of biomolecular modelling. We then use the acquired theoretical background to formulate an important simulation method, Brownian dynamics. We finish by discussing its applications to specific biological problems such as protein-ligand interactions or macromolecular dynamics in the cell. The exercises include theoretical topics as well as simple computations which the students are supposed to programm themselves.
Last update: Hladíková Jana (04.01.2018)
|
|
||
A necessary prerequisite to get the credit is active participation at lectures and exercices. The exam is in oral form. Last update: Lankaš Filip (16.02.2018)
|
|
||
R: I. Nezbeda, J. Kolafa, M. Kotrla, Úvod do molekulárních simulací – Metody Monte Carlo a molekulární dynamiky, Univerzita Karlova, Praha 2002 R: T. Schlick, Molecular Modeling and Simulation, Springer 2010 A: D. Frenkel, B. Smit, Understanding Molecular Simulation, Academic Press 2002 A: J. Šponer, F. Lankaš (eds.), Computational Studies of RNA and DNA, Springer 2006 Last update: Svozil Daniel (29.10.2018)
|
|
||
Solving homework exercises. Last update: Lankaš Filip (16.02.2018)
|
|
||
1. Introduction. Length and time scales in biomolecular modelling 2. Probability 3. Random variables 4. Characteristics of random variables 5. Probability distribution 6. Normal distribution 7. Stochastic processes 8. Langevin equation 9. Brownian motion 10. Brownian dynamics simulations 11. Application I: Diffusion-controlled protein-ligand binding 12. Application II: Dynamics of nucleosomes and of the chromatin fibre 13. Application III: Movement and interactions of biomolecules in the cell 14. Application IV: Bownian simulations of DNA and RNA nanostructures Last update: Lankaš Filip (26.10.2018)
|
|
||
Online materials for the course. Last update: Lankaš Filip (16.02.2018)
|
|
||
Students will:
Last update: Hladíková Jana (04.01.2018)
|
|
||
Basic courses in mathematics, physical chemistry, biochemistry and molecular modelling. Last update: Lankaš Filip (16.02.2018)
|
Teaching methods | ||||
Activity | Credits | Hours | ||
Účast na přednáškách | 1 | 28 | ||
Příprava na přednášky, semináře, laboratoře, exkurzi nebo praxi | 0.5 | 14 | ||
Příprava na zkoušku a její absolvování | 2 | 56 | ||
Účast na seminářích | 0.5 | 14 | ||
4 / 4 | 112 / 112 |
Coursework assessment | |
Form | Significance |
Regular attendance | 30 |
Oral examination | 70 |